首页> 外文学位 >Probabilistic interval-valued computation: Representing and reasoning about uncertainty in DSP and VLSI design.
【24h】

Probabilistic interval-valued computation: Representing and reasoning about uncertainty in DSP and VLSI design.

机译:概率区间值计算:表示和推理DSP和VLSI设计中的不确定性。

获取原文
获取原文并翻译 | 示例

摘要

In DSP and VLSI design, there are many variational parameters that are unknown during the design stage, but significantly affect chip performance. Some uncertainties are due to manufacturing process fluctuations, others depend on the dynamic context in which the chip is used, such as input patterns, temperature and voltage. Chip designers need to consider these uncertainties as early as possible to ensure chip performance, improve yield and reduce design cost. However, it is a challenging task to model uncertainties and predict the joint impacts of them, which often either requires high computational cost or yields unsatisfactory accuracy.; Interval algebra provides a general solution to modeling and manipulating uncertainties. The idea is to replace scalar quantities with bounded intervals, and propagate intervals through arithmetic operations. A recent technique---affine arithmetic---advances the field in handling correlated intervals. However, it still produces overly conservative bounds due to the inability to consider probability information.; The goal of this dissertation is to improve the accuracy of affine arithmetic and broaden its application in DSP and VLSI design. To achieve this goal, we develop a probabilistic interval method that enhances the interval representation and computations with probability information. First, we provide a probabilistic interpretation for affine intervals based on the Central Limit Theory. Based on this interpretation, we present a probabilistic bounding method that returns less pessimistic bounds of affine intervals. Second, we propose an enhanced interval representation form that utilizes probability information to handle asymmetric affine intervals. This addresses a fundamental issue of current affine arithmetic, i.e., it only represents center-symmetric intervals. This restriction highly limits the accuracy of nonlinear interval functions. By introducing center-asymmetric affine intervals, we are able to design better algorithms for nonlinear interval functions. We present the improved algorithms for common nonlinear functions, with emphasis on the multiplication and the division algorithms. Finally, we also realize that in many applications, detailed probability distribution within an interval is more desirable than its bounds. Therefore, another contribution of this dissertation is to enable our interval method to estimate not only the bounds, but also the distribution within an interval. We demonstrate the effectiveness of our techniques by several applications in DSP and VLSI design.
机译:在DSP和VLSI设计中,有许多变化参数在设计阶段是未知的,但会显着影响芯片性能。一些不确定性是由于制造工艺的波动引起的,而另一些不确定性则取决于使用芯片的动态环境,例如输入模式,温度和电压。芯片设计人员需要尽早考虑这些不确定因素,以确保芯片性能,提高良率并降低设计成本。然而,对不确定性进行建模并预测它们的联合影响是一项艰巨的任务,这通常要么需要很高的计算成本,要么会产生令人满意的准确性。区间代数为建模和处理不确定性提供了一种通用解决方案。这个想法是用有界区间代替标量,并通过算术运算传播区间。仿射算术是一种最新技术,它在处理相关区间方面处于领先地位。但是,由于无法考虑概率信息,它仍然产生了过于保守的界限。本文的目的是提高仿射算法的精度,扩大其在DSP和VLSI设计中的应用。为了实现此目标,我们开发了一种概率区间方法,该方法用概率信息增强了区间表示和计算的能力。首先,我们根据中心极值理论对仿射区间进行概率解释。基于这种解释,我们提出了一种概率边界方法,该方法返回的仿射区间的悲观边界更少。其次,我们提出一种增强的区间表示形式,该形式利用概率信息来处理非对称仿射区间。这解决了当前仿射算法的基本问题,即,它仅表示中心对称间隔。这种限制极大地限制了非线性区间函数的准确性。通过引入中心非对称仿射区间,我们能够为非线性区间函数设计更好的算法。我们提出了常见非线性函数的改进算法,重点是乘法和除法算法。最后,我们还意识到,在许多应用中,间隔内的详细概率分布比其边界更可取。因此,本论文的另一个贡献是使我们的区间方法不仅能够估计边界,而且能够估计区间内的分布。我们通过DSP和VLSI设计中的几个应用来证明我们技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号