首页> 外文学位 >Effects of turbulence-chemistry interactions in direct-injection compression-ignition engines.
【24h】

Effects of turbulence-chemistry interactions in direct-injection compression-ignition engines.

机译:直喷式压燃发动机中湍流-化学相互作用的影响。

获取原文
获取原文并翻译 | 示例

摘要

Advanced combustion strategies are emphasized in modern compression-ignition engine systems, aiming at improving diesel engine efficiency and reducing pollutant emissions, especially soot and NOx, together with strategies to accommodate unconventional fuels. Recent studies have shown the importance of turbulence and turbulence-chemistry interactions on emissions from laboratory flames and compression-ignition engines.;Constant-volume, high-pressure spray combustion is an important intermediate step for model validation and scientific understanding of combustion in direct-injection compression-ignition engines. The Engine Combustion Network (ECN) provides a series of well-documented experimental data for spray combustion under typical diesel-engine conditions, and this serves as a good resource for simulation and validation purposes. Here simulations for the ECN constant-volume, n-heptane spray configuration have been performed using OpenFOAM, an object-oriented C++ based code. The effects of exhaust-gas recirculation (EGR), ambient temperature and density on combustion were investigated computationally. The simulations demonstrate that the CFD model is capable of predicting sprays, mixing, ignition and combustion, quantitatively, for engine-relevant conditions reasonably well. The numerical results show that the ignition delay and lift-off lengths are strongly influenced by EGR, ambient gas temperature and ambient gas density, in agreement with measurements. Results from a model using a transported probability density function (PDF) method that explicitly accounts for turbulence-chemistry interactions have been compared to those from a model that simplistically accounts for turbulence-chemistry interactions, including mixture fraction profiles, ignition delays, lift-off lengths and flame structures under various ambient conditions. Significant differences between these two models have been observed, which shows the importance of turbulence-chemistry interactions. The turbulent flame structure predicted by the PDF method is more realistic than that obtained from a simplistic model to account for turbulence-chemistry interactions. The choice of chemical mechanism also plays a strong role.;Next, the high-fidelity CFD-based models have been used to simulate fuel effects and complex interactions between turbulence and gas-phase chemistry on emissions for biodiesel combustion and hydrogen-assisted diesel combustion in common-rail diesel engines. The sensitivity of predicted NOx emissions to variations in the physical properties of the fuel (density and viscosity) has been explored to determine the origins of the so-called biodiesel-NOx effect: the increase in NOx emissions that has been observed when petroleum-based diesel fuel is replaced with biodiesel fuel. Interactions between turbulence and gas-phase chemistry have been found to be important in the fuel density effect on NOx emissions. CFD also has been used to explore the changes in NOx emissions with hydrogen substitution that have been observed experimentally in hydrogen-enriched diesel combustion over a range of operating conditions. In spite of the significant simplifications and approximations, the model is able to reproduce the experimentally observed trends for some operating conditions. A model using a transported PDF method that explicitly accounts for turbulence-chemistry interactions does somewhat better than a model using well-stirred reactor model which ignores turbulence-chemistry interactions, in low-speed conventional diesel combustion cases. The CFD results are consistent with the hypothesis that in-cylinder HO2 levels increase with increasing H2, which enhances the conversion of NO to NO2.;In close collaboration with engine experiments, this research shows that fuel physical properties and complex interactions between turbulence and chemistry have important effects on emissions. It has provided new physical insight into in-cylinder processes, which in turn allows better understanding for advanced engine development.
机译:现代压燃式发动机系统中强调了先进的燃烧策略,旨在提高柴油机效率并减少污染物排放,特别是烟灰和NOx排放,以及容纳非常规燃料的策略。最近的研究表明湍流和湍流-化学相互作用对实验室火焰和压燃式发动机排放物的重要性。恒定体积,高压喷雾燃烧是模型验证和科学理解直接燃烧过程的重要中间步骤。喷射压缩点火发动机。发动机燃烧网络(ECN)为典型柴油发动机工况下的喷雾燃烧提供了一系列有据可查的实验数据,这是进行仿真和验证的良好资源。在这里,已经使用OpenFOAM(基于对象的基于C ++的代码)对ECN定体积正庚烷喷雾配置进行了仿真。通过计算研究了废气再循环(EGR),环境温度和密度对燃烧的影响。仿真表明,CFD模型能够在与发动机相关的条件下合理地预测喷雾,混合,着火和燃烧。数值结果表明,点火延迟和升程长度受EGR,环境气体温度和环境气体密度的影响很大,与测量结果一致。已将使用运输概率密度函数(PDF)方法的模型的结果明确说明了湍流-化学相互作用的结果与简单地说明了湍流-化学相互作用的模型的结果进行了比较,其中包括混合物分数分布,点火延迟,提离在各种环境条件下的长度和火焰结构。已经观察到这两个模型之间的显着差异,这表明了湍流-化学相互作用的重要性。用PDF方法预测的湍流火焰结构比从简单模型获得的湍流-化学相互作用要更现实。化学机理的选择也起着重要作用。接下来,基于高逼真度CFD的模型已被用于模拟燃料效应以及湍流和气相化学之间复杂的相互作用,从而降低了生物柴油燃烧和氢辅助柴油燃烧的排放量。在共轨柴油发动机中。已经探索了预测的NOx排放对燃料物理性质(密度和粘度)变化的敏感性,以确定所谓的生物柴油-NOx效应的根源:当使用石油基燃料时,观察到的NOx排放增加柴油被生物柴油替代。已经发现湍流和气相化学之间的相互作用在燃料密度对NOx排放的影响中很重要。 CFD还被用于探索通过氢取代引起的NOx排放的变化,该变化在一系列操作条件下的富氢柴油燃烧中通过实验观察到。尽管有明显的简化和近似,但是该模型仍能够重现在某些操作条件下实验观察到的趋势。在低速常规柴油机燃烧情况下,使用运输的PDF方法明确说明湍流-化学相互作用的模型比使用搅拌良好的反应器​​模型的模型要好一些,该模型忽略了湍流-化学相互作用。 CFD结果与以下假设相吻合:气缸中的HO2水平随H2的增加而增加,这会促进NO向NO2的转化。;与发动机实验紧密合作,这项研究表明燃料的物理性质以及湍流与化学之间复杂的相互作用对排放有重要影响。它为缸内过程提供了新的物理见解,从而可以更好地理解高级发动机开发。

著录项

  • 作者

    Zhang, Hedan.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号