首页> 外文学位 >Excited state interactions in graphene oxide-semiconductor/metal nanoparticle architectures for sensing and energy conversion.
【24h】

Excited state interactions in graphene oxide-semiconductor/metal nanoparticle architectures for sensing and energy conversion.

机译:氧化石墨烯-半导体/金属纳米粒子结构中的激发态相互作用,用于传感和能量转换。

获取原文
获取原文并翻译 | 示例

摘要

The recent emergence of graphene, along with its unique and impressive set of properties, has resulted in a concerted effort to incorporate the material into electronic devices and composite materials. Graphene oxide, a chemically modified form of graphene which can be produced economically and in large scale, is one of the most common starting materials for making graphene composite materials with improved conductivity, photovoltaic performance, and photocatalytic activity, to name a few examples. This dissertation describes progress made in understanding and quantifying the electronic properties of graphene oxide as they relate to electron storage and shuttling in composite materials.;A more complete understanding of the nature of electronic interactions in graphene composites was achieved through two processes: 1) A dual electron-titration showing storage and shuttling of electrons in reduced graphene oxide. 2) A method developed to isolate the energy and electron transfer pathways involved in the deactivation of excited CdSe quantum dots by RGO. The results obtained from these two processes provide insight into the electronic interactions between graphene, semiconductors, and metals.;Additionally, composite films were constructed to demonstrate the electron transfer properties of reduced graphene oxide. TiO2-reduced graphene oxide films were made via a simple drop-cast technique. The films show enhanced photovoltaic and photocatalytic characteristics when compared to TiO2-only films. A stacked architecture incorporating single-layer reduced graphene oxide on thin TiO2 nanoparticle films was developed as a method for illumination-controlled deposition of metal nanoparticles. Films of metal nanoparticles made using this technique were employed as Surface Enhanced Resonance Raman (SERRS) sensors and show nano-molar sensitivity. Finally, quantum dot-reduced graphene oxide composites were made via an electrophoretic deposition process. The resulting films were used as photoanodes in photoelectrochemical cells and show improvements in photocurrent generation of up to ~150% over CdSe-only photoanodes.;On account of the advantageous electronic properties and improved device performance, the work described in this dissertation provides a basis for further exploration in the field of reduced graphene composite materials. The versatility of the material along with the methods designed for customizable film construction makes it an ideal material for next-generation sensors and catalyst materials.
机译:石墨烯的最新出现,以及其独特而令人印象深刻的一系列性能,促使人们共同努力将这种材料掺入电子器件和复合材料中。仅举几个例子,氧化石墨烯是可以经济地大规模生产的石墨烯的化学改性形式,是制备具有改善的电导率,光伏性能和光催化活性的石墨烯复合材料的最常见的原材料之一。这篇论文描述了在理解和量化氧化石墨烯的电子性能方面的进展,因为它们与复合材料中的电子存储和穿梭有关。通过两个过程,人们对石墨烯复合材料中电子相互作用的性质有了更完整的了解:1)A双电子滴定法显示了在还原氧化石墨烯中电子的存储和穿梭。 2)开发了一种方法,用于分离涉及通过RGO激活CdSe量子点失活的能量和电子转移途径。从这两个过程获得的结果为洞悉石墨烯,半导体和金属之间的电子相互作用提供了见识。此外,还构建了复合膜以证明还原的氧化石墨烯的电子转移性能。 TiO 2还原的氧化石墨烯薄膜是通过简单的滴铸技术制成的。与仅TiO2的薄膜相比,该薄膜显示出增强的光伏和光催化特性。作为在光照控制下沉积金属纳米颗粒的方法,已开发出在单层TiO2纳米颗粒薄膜上结合了单层还原氧化石墨烯的堆叠体系结构。使用该技术制备的金属纳米颗粒薄膜被用作表面增强共振拉曼(SERRS)传感器,并显示出纳摩尔灵敏度。最后,通过电泳沉积工艺制备了量子点还原的氧化石墨烯复合材料。所得薄膜用作光电化学电池中的光阳极,与仅使用CdSe的光阳极相比,显示出高达150%的光电流产生。;由于具有优越的电子性能和改善的器件性能,本文的工作提供了基础用于还原石墨烯复合材料领域的进一步探索。该材料的多功能性以及为可定制膜构造而设计的方法使其成为下一代传感器和催化剂材料的理想材料。

著录项

  • 作者

    Lightcap, Ian V.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Chemistry Inorganic.;Nanoscience.;Nanotechnology.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号