首页> 外文学位 >Guaranteed stability for collision detection and simulation of hybrid dynamical systems.
【24h】

Guaranteed stability for collision detection and simulation of hybrid dynamical systems.

机译:混合动力系统碰撞检测和仿真的保证稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Both Collision Detection for models composed of parametric surfaces and Dynamic Simulation for multibody systems subject to intermittent contact can be formulated as hybrid system simulation problems. Collision Detection involves tracking surface parameters across boundaries between surface patches, where the surface parameters locate points that are pairwise closest to each other. Dynamic Simulation involves transitions between various constraint conditions, occasionally with jumps in the state due to impacts. Guaranteed stability is a critical property for algorithms in both areas, especially since constrained system simulation may drift from the constraint manifold or suffer other instabilities due to inexact initializations. This dissertation contributes new algorithms for Collision Detection on parametric models and Dynamic Simulation of hybrid dynamical systems that enjoy guaranteed stability properties.; Part I presents a simulator designed to handle multibody systems with changing constraints, wherein the equations of motion for the system in each of its constraint configurations are formulated in minimal ODE form with constraints embedded before they are passed to an ODE solver. Issues of drift associated with DAE solvers that usually require stabilization are sidestepped with the constraint-embedding approach. The constraint-embedded equations are formulated symbolically on-line according to a re-combination of terms of the unconstrained equations. Constraint-embedding undertaken on-the-fly enables the simulation of systems with an ODE solver for which constraints are not known prior to simulation start or for which the enumeration of constraint conditions would be unwieldy.; In Part II, a novel minimum distance tracking algorithm is presented for parametric models formed by tiling together convex surface patches. The essentially geometric minimization problem is differentiated with respect to time to form a dynamical non-linear control problem. Minimization is then solved with the design of a switching stabilizing controller based on a common control Lyapunov function. Together with a top-level switching algorithm based on Voronoi diagrams, the controller accounts for the combined and interacting effects of object shape and object motion while achieving global uniform asymptotic stability for the pair of closest points. Limits of performance are available, delineating values for control gains needed to suppress motion (and shape) disturbances and preserve convergence under discretization.
机译:包含参数曲面的模型的碰撞检测和间歇接触的多体系统的动态仿真都可以表述为混合系统仿真问题。碰撞检测包括跨表面补丁之间的边界跟踪表面参数,其中表面参数定位成对彼此最接近的点。动态仿真涉及各种约束条件之间的转换,有时会由于碰撞而导致状态跳跃。对于两个领域的算法而言,保证的稳定性都是至关重要的属性,尤其是因为受约束的系统仿真可能会由于约束不准确而偏离约束流形,或者由于初始化不准确而遭受其他不稳定因素。论文为参数模型的碰撞检测和混合动力系统的动力学仿真提供了新的算法,该算法具有保证的稳定性。第一部分介绍了一种设计用于处理具有变化的约束的多体系统的模拟器,其中,系统在其每个约束配置中的运动方程都以最小的ODE形式制定,其中嵌入了约束,然后将其传递给ODE求解器。与DAE求解器相关的通常需要稳定化的漂移问题已通过约束嵌入方法得以避免。根据无约束方程的项的重新组合,在线约束地表达约束方程。动态进行约束嵌入可以使用ODE求解器对系统进行仿真,该系统的约束在仿真开始之前是未知的,或者约束条件的枚举将很麻烦。在第二部分中,提出了一种新颖的最小距离跟踪算法,用于通过将凸面补丁拼接在一起而形成的参数模型。关于时间将本质上的几何最小化问题微分以形成动态非线性控制问题。然后通过基于公共控制Lyapunov函数的开关稳定控制器的设计来解决最小化问题。结合基于Voronoi图的顶级切换算法,该控制器考虑了对象形状和对象运动的组合和交互作用,同时为这对最近的点实现了全局一致的渐近稳定性。性能极限是可用的,它描绘了抑制运动(和形状)干扰并在离散化条件下保持收敛所需的控制增益值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号