首页> 外文学位 >Path dependence and strength anisotropy of mechanical behavior in cold-compacted powders.
【24h】

Path dependence and strength anisotropy of mechanical behavior in cold-compacted powders.

机译:冷压粉中力学行为的路径依赖性和强度各向异性。

获取原文
获取原文并翻译 | 示例

摘要

The problem of compaction of powders at low homologous temperatures has been studied over the last twenty years in many fields including powder metallurgy, ceramics, pharmaceutical, agricultural, and mining. Recent emphasis of research efforts has been on the use of phenomenological models that are capable of predicting compaction loads and density distributions in the final product. However, the mechanical properties of the compact cannot be predicted from current models since they consider strength as a function of density alone. A number of studies have shown that strength is dependent on other variables besides density, including the stress path used for consolidation.; In prior work, path dependence in ductile powders has been shown experimentally. In this thesis, a ceramic, dibasic calcium phosphate, was consolidated using a variety of stress paths, ranging from nearly isostatic to nearly closed-die. Yield loci were shown to be dependent on stress path as well as compact density.; Strength anisotropy in ductile and brittle powders was shown to exist after closed-die compaction and is dependent on compact density. Ductile powders become increasingly anisotropic with density. Brittle powders exhibit anisotropy during the early stages of compaction, but this diminishes as densification continues. Separate mechanisms to explain these behaviors are proposed and supported with experimental data from tensile strength testing, SEM fracture surface analysis and surface area testing. Finally, path dependence and strength anisotropy are shown to have a common origin, namely, directionality of microstructure resulting from initial particle morphology and particle deformation during compaction.
机译:过去二十年来,在许多领域,包括粉末冶金,陶瓷,制药,农业和采矿业,都研究了在低同源温度下粉末压实的问题。最近的研究重点是使用现象学模型,该模型能够预测最终产品中的压实载荷和密度分布。但是,由于当前的模型仅将强度作为密度的函数,因此无法从当前模型中预测其力学性能。许多研究表明,强度除了密度以外还取决于其他变量,包括用于固结的应力路径。在先前的工作中,已经通过实验证明了韧性粉末中的路径依赖性。在这篇论文中,使用从近等静压到近闭模的各种应力路径对陶瓷二元磷酸钙进行了固结。屈服位点显示取决于应力路径以及紧密密度。韧性和脆性粉末的强度各向异性显示为闭模压实后存在,并且取决于压实密度。延性粉末的密度变得越来越各向异性。脆性粉末在压实的早期阶段表现出各向异性,但是随着致密化的持续进行,这种现象逐渐减少。提出了单独的机制来解释这些行为,并提供了抗拉强度测试,SEM断裂表面分析和表面积测试的实验数据。最后,显示出路径依赖性和强度各向异性具有共同的起源,即由初始颗粒形态和压实过程中的颗粒变形产生的微观结构的方向性。

著录项

  • 作者

    Galen, Steven A.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号