首页> 外文学位 >Dynamics of Acoustically Actuated Droplet Breakup and Manipulation in a Flow-Focusing Microfluidic Device.
【24h】

Dynamics of Acoustically Actuated Droplet Breakup and Manipulation in a Flow-Focusing Microfluidic Device.

机译:聚焦流微流控装置中声控液滴破碎和操纵的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Droplets of sizes in the range of micro- to nano-scales found many applications in biomedical industry, food processing industry, chemical and mechanical engineering. Control on the size of droplets produced in microfluidic devices can be achieved through passive (only controlled by the flow fields of the two immiscible fluids) and active methods (external actuation provided). The present work focuses on the investigation of a novel method with the incorporation of a piezoelectric actuator to control the droplet formation process in a flow-focusing device.;Acoustic actuation causes a boundary-induced microstreaming flow in the two immiscible fluids at the cross-junction of the device. The scale of the microstreaming flow is within the Stokes layer and is periodic in nature. Phase-resolved micro-particle-image-velocity (μPIV) is applied for extracting the global, phase-averaged and periodic components from the microstreaming flow. Vibrating fluid-fluid interfaces are observed and acoustic actuation causes a reduction in the droplet size.;Characterization of droplet formation under acoustic actuation is performed. The effects of the control parameters, flow rate ratio, voltage and frequency of acoustic actuation, continuous phases with different viscosities on droplet formation are characterized. Droplet size decreases with increase in the voltage and frequency of acoustic actuation. Continuous phases with higher viscosities cause a restrained vibration motion at the fluid-fluid interface with a reduced extent of vibration. Since droplet formation mainly depends on the extent of the vibration motion, acoustic actuation is more effective in affecting the breakup of droplets in a continuous phase with a lower viscosity.;The evolution of the interfacial curvature during the whole droplet formation process in a flow-focusing device is investigated. Two critical curvature values that determine the detachment of liquid thread from walls of orifice and the onset of pinch-off are identified. The rate of evolution mainly depends on the flow rates of the two immiscible fluids and the flow through the gap between the liquid thread and the walls of the orifice. Acoustic actuation reduces the time for triggering the onset of pinch-off as the vibrating interface hinders the process of relaxation of interfacial energy and making pinch-off easier to trigger.;Keywords: droplet formation dynamics, immiscible microfluidics, micro-particle-image-velocimetry (μPIV), acoustofluidics, microchannel flow, microelectromechanical systems (MEMS).
机译:微滴的大小范围在微米到纳米之间,在生物医学行业,食品加工行业,化学和机械工程中有许多应用。可通过被动(仅由两种不混溶流体的流场控制)和主动方法(提供外部驱动力)来控制微流体设备中产生的液滴尺寸。目前的工作集中于研究一种新方法,该方法结合了压电致动器来控制流聚焦装置中的液滴形成过程。声致动会在交叉处的两种不混溶流体中引起边界诱导的微流流动。设备的连接点。微流的规模在斯托克斯层内,并且本质上是周期性的。相分辨的微粒图像速度(μPIV)用于从微流中提取全局,相平均和周期性分量。观察到振动的流体-流体界面,并且声激励导致液滴尺寸减小。;进行声激励下的液滴形成的表征。表征了控制参数,流速比,声激励的电压和频率,具有不同粘度的连续相对液滴形成的影响。液滴尺寸随着声激励电压和频率的增加而减小。具有较高粘度的连续相会导致流体-流体界面处的振动受到限制,从而振动程度减小。由于液滴的形成主要取决于振动运动的程度,因此声激励在影响具有较低粘度的连续相中的液滴破裂方面更有效。流动过程中整个液滴形成过程中界面曲率的演变聚焦装置的研究。确定了两个临界曲率值,这些临界曲率值确定了液体螺纹从孔壁的分离和夹断的开始。析出速率主要取决于两种不混溶的流体的流速以及通过液体螺纹和孔壁之间的间隙的流速。声致动减少了触发夹断的时间,因为振动界面阻碍了界面能量的松弛过程,使夹断更容易触发。关键词:液滴形成动力学,不混溶的微流体,微粒图像测速(μPIV),声流体,微通道流量,微机电系统(MEMS)。

著录项

  • 作者

    Cheung, Yin Nee.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号