首页> 外文学位 >Transmission Power Management for Wireless Health Applications.
【24h】

Transmission Power Management for Wireless Health Applications.

机译:无线医疗应用的传输功率管理。

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of ubiquitous sensing devices along with advances in low power wireless communication technology have resulted in the extensive use of wireless body area networks (WBANs) as the building blocks of the emerging field of wireless health. In these battery-operated WBANs, the sensor devices are strategically placed in/on the human body and the short/mid/long wireless communications are conducted on/off the surface of the body. As the battery energy does not follow Moore's law, energy-efficiency is always one of the design challenges of wireless health-monitoring systems, impacting usability, security, and cost. The idea of transmission power control (TPC) is to automatically reduce the radio amplifier's output power when the transmission power is more than required. Reduced transmission power translates into more energy savings and reduced interference problems. TPC techniques have been used in abundance in cellular networks and wireless LANs. TPC schemes for WBANs, however, are still in their infancy. For example, current IEEE 802.15.4 specifications do not differentiate between mobile and static settings, thus leaving WBAN transmitters in the dark as to what transmission power level they should utilize.;In this dissertation, we have investigated the potential benefits and limitations of TPC as a means to extend the battery lifetime in WBANs at the first three abstraction levels. Physical and MAC layers' approach to TPC perform a local optimization, whereas network layer TPC is capable of a global optimization. At the network layer, we analytically solve an optimization problem whose solution determines an important parameter, i.e., energy-efficient cluster size, for a class of routing/MAC protocols in WBANs. Assuming that the routes are established in an energy-efficient manner, we then experimentally profile the 2.4 GHz on/off-body radio channel under several scenarios regarding mobility states and environments, and we showed that fixed transmission power either wastes energy or hinders reliability. Finally, we devote our attention to an ambulatory medical monitoring WBAN system, which is tied up with different characteristics in terms of mobility, periodicity, and `unforgivingness' of the wireless channel as a result of proximity to the ground as well as to human's body. The target ambulatory WBAN system encompasses a pair of wireless instrumented insoles (known as smart insoles) for gait data collection, plantar pressure monitoring, and gait analysis. We design a sensor-assisted TPC scheme that augments in-network information with information from built-in sensors. To this end, multiple mobility states are defined for the smart insoles and the mobility states are incorporated into transmission power control policies. Available sensor information is leveraged to detect the mobility states, based on which the TPC scheme switches strategies.;We validate this new idea of switching transmission power control strategies by implementing and evaluating the sensor-assisted scheme and comparing it against a frame-based TPC scheme, which adjusts the transmit power solely based on recent information about packet transmission successes and failures. Our testbed experiments involving mixed mobility scenarios show that our TPC scheme obtains up to 50% increase in the battery lifetime, enabling the smart insoles to be used in uncontrolled environments. Such an improvement in battery longevity (from 4.0 hours to 7.8 hours) is made by reducing the average energy consumed for communication of a single packet from 4.51 mJ/pkt to 2.27 mJ/pkt.;Although designed for the smart insoles as a severely energy-constrained device, the sensor-assisted TPC technique is readily deployable on a variety of today's commodity devices to make a connection between the sensing subsystem and the communication subsystem of such devices. In addition, as the underlying mobility state detection methods place relaxed requirements on how the device should be worn in terms of orientation and position, they can be used for a variety of purposes, such as improving the patient's compliance with medical treatments and therapies.
机译:无处不在的传感设备的普及以及低功耗无线通信技术的进步,导致无线体域网(WBAN)的广泛使用成为无线健康领域新兴的组成部分。在这些电池供电的WBAN中,传感器设备策略性地放置在人体中/上,并且短/中/长无线通信在人体表面上/外进行。由于电池能量不符合摩尔定律,因此能效始终是无线健康监测系统的设计挑战之一,从而影响可用性,安全性和成本。发射功率控制(TPC)的思想是在发射功率超过要求时自动降低无线电放大器的输出功率。降低的传输功率可以节省更多能源,并减少干扰问题。 TPC技术已经在蜂窝网络和无线LAN中大量使用。但是,用于WBAN的TPC计划仍处于起步阶段。例如,当前的IEEE 802.15.4规范没有在移动设置和静态设置之间进行区分,因此使WBAN发射机在应使用的发射功率级别方面处于黑暗状态;在本文中,我们研究了TPC的潜在优势和局限性作为在前三个抽象级别上延长WBAN中电池寿命的一种手段。物理层和MAC层对TPC的方法执行本地优化,而网络层TPC能够进行全局优化。在网络层,我们分析性地解决了一个优化问题,该问题的解决方案确定了WBAN中一类路由/ MAC协议的重要参数,即节能簇大小。假设以节能的方式建立了路由,然后我们在几种有关移动性状态和环境的情况下对2.4 GHz人体上/体外无线电信道进行了实验分析,结果表明固定的传输功率既浪费能量,又降低了可靠性。最后,我们将注意力集中在动态医疗监视WBAN系统上,该系统由于靠近地面以及人体而与无线信道的移动性,周期性和“不可宽恕”具有不同的特征。目标非卧式WBAN系统包括一对用于步态数据收集,足底压力监测和步态分析的无线仪器化鞋垫(称为智能鞋垫)。我们设计了一种传感器辅助的TPC方案,该方案可利用来自内置传感器的信息来增强网络内信息。为此,为智能鞋垫定义了多个移动性状态,并且将移动性状态合并到传输功率控制策略中。利用可用的传感器信息来检测移动状态,TPC方案将基于此信息切换策略。我们通过实施和评估传感器辅助方案并将其与基于帧的TPC进行比较,验证了切换传输功率控制策略的这一新想法。方案,仅基于有关分组传输成功和失败的最新信息来调整发射功率。我们的涉及混合移动场景的试验台实验表明,我们的TPC方案可将电池寿命延长多达50%,从而使智能鞋垫可以在不受控制的环境中使用。通过将单个数据包通信的平均能量消耗从4.51 mJ / pkt降低到2.27 mJ / pkt,可以将电池寿命从4.0小时提高到7.8小时。在受约束的设备中,传感器辅助的TPC技术很容易部署在当今的各种商用设备上,以在此类设备的传感子系统和通信子系统之间建立连接。此外,由于潜在的移动状态检测方法对设备在方向和位置上的佩戴方式提出了宽松的要求,因此它们可用于多种目的,例如提高患者对药物治疗和治疗的依从性。

著录项

  • 作者

    Amini, Navid.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Computer.;Computer Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号