首页> 外文学位 >MEMS microbial fuel cells and photosynthetic electrochemical cells.
【24h】

MEMS microbial fuel cells and photosynthetic electrochemical cells.

机译:MEMS微生物燃料电池和光合电化学电池。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we present three MEMS (Micro-electro-mechanical Systems) biological electrochemical cells: (1) a microbial fuel cell (muMFC) utilizing glucose as the bio-fuel and live baker's yeast as the bio-catalyst; (2) a photosynthetic electrochemical cell (muPEC1) based on unicellular bacteria Anabaena as the biological photo-electrical converter; and (3) a second photosynthetic electrochemical cell (muPEC2) powered by photosynthetic subcellular plant organelles---thylakoids---as the biocatalyst.; In the MEMS microbial fuel cell, as the yeast metabolized glucose, electrons were liberated within the organism. These electrons were captured by a fuel cell fabricated from Si and glass using micromachining technologies. In this fuel cell, glucose and live yeast were mixed in solution with a diffusional redox mediator that "siphoned" those electrons from the yeast cells and donated them to the anode. The electrons traveled through an external load to the cathode, where they were passed to an electron acceptor agent (ferricyanide). Experimentally, the muMFC generated a peak open circuit voltage of 450 mV, peak current density of 15 muA/cm2, and corresponding power density of 2.3 nW/cm2.; The first MEMS photosynthetic electrochemical cell harnessed Anabaena to liberate electrons from water under illumination and captured those electrons in a micromachined fuel cell similar to the muPFC. Experimentally, under the illumination of a desk lamp 60 W bulb, the muPEC1 produced 400 mV peak open circuit voltage, 2.0 muA/cm2 current density, and 0.04 nW/cm2 power density. There was one unintuitive feature of the muPEC1---it was capable of sustaining electrical output in the dark comparable to output in the light, even when photosynthesis did not contribute electrons in the dark. It did this by reverting to a microbial fuel cell in the dark, metabolizing the glucose that it had generated for itself.; In the second version of our photosynthetic electrochemical cell (muPEC2), the MEMS design, microfabrication, and assembly were improved. Moreover, instead of utilizing live cultures of photosynthetic bacteria, we isolated from spinach just the photosynthetic sub-cellular organelles called thylakoids. By harnessing just thylakoids, the complexities of whole, live photosynthetic bacteria were reduced. Under illumination intensity of 2000 mumol photons/m2/s (approximately the solar intensity of a cloudless spring day), the muPEC2 generated a peak 480 mV open circuit voltage, 1.0 muA/cm2 , and 5.4 pW/cm2.; To increase the energy conversion efficiency of these MEMS fuel cells, we proposed immobilizing the thylakoids and electron mediators directly onto the electrode using "bioelectrocatalytic" self-assembled monolayers (bio-SAMs). Immobilization of thylakoids onto bio-SAMs of cystamine and pyrroloquinoline quinone (PQQ) was demonstrated for the anode. When such bio-SAMs are optimized, we expect marked efficiency gains for MEMS microbial fuel cells and photosynthetic electrochemical cells, such that they could rival more conventional power technologies.
机译:本文介绍了三种MEMS(微机电系统)生物电化学电池:(1)以葡萄糖为生物燃料,以活酵母酵母为生物催化剂的微生物燃料电池(muMFC); (2)基于单细胞细菌鱼腥藻作为生物光电转换器的光合电化学电池(muPEC1); (3)第二个光合作用电化学细胞(muPEC2),由光合作用的亚细胞植物细胞器-类囊体-作为生物催化剂。在MEMS微生物燃料电池中,随着酵母代谢葡萄糖,电子在生物体内释放。这些电子被硅和玻璃制成的燃料电池使用微加工技术捕获。在该燃料电池中,葡萄糖和活酵母与扩散氧化还原介体在溶液中混合,该介导从酵母细胞中“虹吸”这些电子并将其捐赠给阳极。电子通过外部负载到达阴极,在阴极传递给电子受体剂(铁氰化物)。在实验中,muMFC产生的峰值开路电压为450 mV,峰值电流密度为15μA/ cm2,相应的功率密度为2.3 nW / cm2。第一个MEMS光合作用电化学电池利用鱼腥藻在光照下从水中释放出电子,并在类似于muPFC的微机械燃料电池中捕获了这些电子。实验上,在60 W台灯灯泡的照明下,muPEC1产生了400 mV的峰值开路电压,2.0μA/ cm2的电流密度和0.04 nW / cm2的功率密度。 muPEC1-有一个不直观的特征-即使在黑暗中光合作用没有贡献电子,muPEC1-仍然能够在黑暗中维持与光下相同的电输出。它通过在黑暗中恢复到微生物燃料电池,代谢其自身产生的葡萄糖来实现。在我们的光合作用电化学电池(muPEC2)的第二版中,改进了MEMS设计,微细加工和组装。而且,我们没有利用光合细菌的活培养物,而是从菠菜中仅分离了被称为类囊体的光合亚细胞细胞器。通过仅利用类囊体,减少了整个活的光合细菌的复杂性。在2000μmol光子/ m2 / s的光照强度(大约是无云的春季的太阳强度)下,muPEC2产生了480mV的开路电压峰值,1.0μA/ cm2和5.4pW / cm2。为了提高这些MEMS燃料电池的能量转换效率,我们建议使用“生物电催化”自组装单分子层(bio-SAMs)将类囊体和电子介体直接固定在电极上。证明类固醇固定在胱胺和吡咯并喹啉醌(PQQ)的生物SAM上作为阳极。当对此类生物SAM进行优化时,我们预计MEMS微生物燃料电池和光合电化学电池的效率将显着提高,从而可以与更常规的功率技术相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号