首页> 外文学位 >Micromechanics based matrix design for engineered cementitious composites.
【24h】

Micromechanics based matrix design for engineered cementitious composites.

机译:基于微机械的水泥基复合材料基体设计。

获取原文
获取原文并翻译 | 示例

摘要

Engineered Cementitious Composites (ECC) are a unique class of high performance fiber reinforced cementitious composites featuring high tensile ductility and low fiber content. Material engineering of ECC is constructed on the paradigm of the relationships between material microstructures, processing, material properties, and performance, where micromechanics is highlighted as the unifying link between composite mechanical performance and material microstructure properties.; The thesis focuses on the development of a comprehensive understanding of matrix micromechanics associated with multiple cracking and strain-hardening behavior of ECC, and the application of this understanding in the design of ECC materials with multiple performance targets. In the aspects of micromechanics modeling, the cracking mechanism of ECC was investigated and a strength model was proposed. The revealed connection between pre-existing flaw size and matrix cracking provided insight for achieving saturated multiple cracking through matrix flaw size distribution control. In addition, the fiber bridging model was improved in terms of crack opening prediction by taking two physical fiber relaxation mechanisms into account.; The micromechanics models were then utilized to guide the microstructure tailoring in the development of several application oriented ECC materials, e.g. high early strength ECC, green ECC, and lightweight ECC. In these materials, in addition to high tensile ductility, one or more additional matrix-governed performance targets were selected for the prospective applications. Design for these performance targets may have a negative impact on composite ductility. Micromechanics tools facilitate an understanding of the influence of matrix composition changes on the composite behavior and identify the most critical microstructure property relevant to an individual performance target. Performance optimization was made through dedicated control of interface bond properties, flaw size distribution and matrix toughness.
机译:工程水泥基复合材料(ECC)是一类独特的高性能纤维增强水泥基复合材料,具有高拉伸延展性和低纤维含量。 ECC的材料工程是建立在材料微观结构,加工,材料特性和性能之间关系的范式上的,其中微力学被强调为复合机械性能和材料微观结构特性之间的统一链接。本文着重于对与ECC的多次开裂和应变硬化行为相关的基体微观力学的全面理解,并将这种理解应用于具有多种性能指标的ECC材料的设计中。在微观力学建模方面,研究了ECC的开裂机理,提出了强度模型。预先存在的缺陷尺寸与基体裂纹之间的显着联系为通过基体缺陷尺寸分布控制实现饱和多次裂纹提供了见识。另外,通过考虑两种物理的纤维松弛机制,改进了纤维桥接模型的裂纹开裂预测。然后,在一些面向应用的ECC材料的开发中,利用微力学模型来指导微结构剪裁。高早期强度ECC,绿色ECC和轻量级ECC。在这些材料中,除了高拉伸延展性外,还为预期的应用选择了一种或多种附加的基体控制性能指标。这些性能目标的设计可能会对复合材料的延展性产生负面影响。微观力学工具有助于理解基质组成变化对复合材料行为的影响,并确定与单个性能目标相关的最关键的微观结构特性。通过专门控制界面粘结性能,缺陷尺寸分布和基体韧性来进行性能优化。

著录项

  • 作者

    Wang, Shuxin.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号