首页> 外文学位 >Morphology of unconfined and confined swirling flows under non-reacting and combustion conditions.
【24h】

Morphology of unconfined and confined swirling flows under non-reacting and combustion conditions.

机译:在非反应和燃烧条件下无限制和受限旋流的形态。

获取原文
获取原文并翻译 | 示例

摘要

Swirl is used in practically all types of combustion systems, including gas turbine combustion, furnaces and boilers. In combustion systems, the strong favorable effect of swirl to combustion air and/or fuel has been extensively used for flame stabilization, high heat release per unit volume, and clean efficient combustion. Flow and combustion characteristics of non-reacting and reacting swirl flowfields are characterized using a simulated Lean Direct Injection (LDI) method in a double concentric swirl burner. The LDI scheme had a large number of small size holes for fuel injection to provide rapid fuel mixing into the surrounding combustion air. The double concentric burner allowed examination of radial distribution of swirl in the burner (co- and counter-flow) under unconfined and confined conditions, both without and with combustion. The input thermal loading to the burner was held constant at 33 kW for all flames.; Particle image velocimetry (PIV), optical emission spectroscopy (OES), infrared (IR) thermometry, gas analysis and computer compensated micro-thermocouple measurements, were used for diagnostics. These diagnostics provided information on spatial and temporal distribution of flowfield, flame generated radicals, mean gas species concentration, and mean and rms temperatures compensated to high frequencies as well as the associated integral- and micro-thermal time scales, respectively.; Unconfined co-swirl flows had generally wider (except non-reacting) and longer internal recirculation zones, slower velocity decay, smaller reverse flow velocity, lower intensity of flame generated radicals, higher temperatures, and longer integral- and micro-thermal time scales as compared to its counter part. Confinement altered the global flame structure dramatically by rapid radial expansion of the flame to the combustor walls. It increased length and decreased width of the internal recirculation zone, delayed the velocity decay, increased temperatures, amplified intensity of flame generated radicals over a greater region, and enlarged turbulence levels. The vortical structures associated with the instantaneous flow for all cases revealed significant dynamical behavior in the flow as compared to the mean flow case. Infrared thermometry results supported the micro-thermocouple data on mean temperatures. The trend for NOx emissions was higher for the confined case in both co- and counter-swirl cases.
机译:旋流几乎用于所有类型的燃烧系统,包括燃气轮机燃烧,熔炉和锅炉。在燃烧系统中,旋流对燃烧空气和/或燃料的强烈有利影响已广泛用于火焰稳定,单位体积的高热量释放以及清洁高效的燃烧。在双同心旋流燃烧器中,使用模拟的精益直接喷射(LDI)方法对非反应和反应旋流场的流动和燃烧特性进行了表征。 LDI方案具有大量用于喷油的小孔,以将快速的燃油混合到周围的燃烧空气中。双同心燃烧器可在无限制和密闭条件下(无论有无燃烧)检查燃烧器中涡流的径向分布(同流和逆流)。对于所有火焰,燃烧器的输入热负荷保持恒定在33 kW。粒子图像测速(PIV),光发射光谱(OES),红外(IR)测温,气体分析和计算机补偿的微热电偶测量被用于诊断。这些诊断信息提供了关于流场的空间和时间分布,火焰产生的自由基,平均气体种类浓度以及分别补偿了高频以及相关的积分和微热时间标度的平均和均方根温度的信息。无限制的共旋流一般具有较宽的(非反应性除外)和较长的内部再循环区,较慢的速度衰减,较小的逆流速度,较低的火焰生成自由基强度,较高的温度以及较长的积分和微热时间标度。相对于它的对应部分。封闭通过火焰向燃烧室壁的快速径向膨胀而极大地改变了整体火焰结构。它增加了内部再循环区域的长度并减小了其宽度,延迟了速度衰减,温度升高,火焰在更大区域上产生的自由基的放大强度以及湍流水平的增大。与平均流量情况相比,所有情况下与瞬时流量相关的旋涡结构都显示出明显的动力学行为。红外测温结果支持了平均温度下的微热电偶数据。在密旋情况和反旋情况下,密闭情况下的NOx排放趋势都较高。

著录项

  • 作者

    Archer, Sean Stacey.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号