首页> 外文学位 >Fundamental limits and insights: from wireless communication to DNA sequencing.
【24h】

Fundamental limits and insights: from wireless communication to DNA sequencing.

机译:基本限制和见解:从无线通信到DNA测序。

获取原文
获取原文并翻译 | 示例

摘要

Interference is a central phenomenon in wireless networks of all types, occurring whenever multiple users attempt to communicate over a shared medium. Current state-of-the-art systems rely on two basic approaches: orthogonalizing communication links, or treating interference as noise. These approaches both suffer from a swift degradation in performance as the number of users in the system grows large. Recently, interference alignment has emerged as a promising new perspective towards mitigating interference. The extent of the potential benefit of interference alignment was observed by Cadambe and Jafar (2008), who showed that for time-varying or frequency selective channels, K2 total degrees of freedom are achievable in a K-user interference channel. In the context of the result, this means that interference causes essentially no degradation at all in performance as the number of users grows. However, a caveat is that the number of independent channel realizations needed over time or frequency, i.e. the channel diversity, is unbounded. Actual communication systems have only finite channel diversity, and thus the practical implications of interference alignment are uncertain: Just how much channel diversity is required in order to get substantial benefit from interference alignment? The first part of this thesis focuses on this question. Our first result characterizes the degrees of freedom for the three-user interference channel as a function of time or frequency diversity. We next focus on spatial diversity, in the form of multiple antennas at transmitters and receivers. We characterize the degrees of freedom for the symmetric three-user multiple-input multiple-output interference channel. This result is partially generalized to an arbitrary number of users, under a further symmetry assumption.;The second part of this thesis studies DNA sequencing from an information theory point-of-view. DNA sequencing is the basic workhorse of modern day biology and medicine. Shotgun sequencing is the dominant technique used: many randomly located short fragments called reads are extracted from the DNA sequence, and these reads are assembled to reconstruct the original sequence. During the last two decades, many assembly algorithms have been proposed, but comparing and evaluating them is difficult. To clarify this, we ask: Given N reads of length L sampled from an arbitrary DNA sequence, is it possible to achieve some target probability 1 – ε of successful reconstruction? We show that the answer depends on the repeat statistics of the DNA sequence to be assembled, and we compute these statistics for a number of reference genomes. We construct lower bounds showing that reconstruction is impossible for certain choices of N and L, and complement this by analytically deriving the performance of several algorithms, both in terms of repeat statistics. In seeking an algorithm that matches the lower bounds on real DNA data, we are able to methodically progress towards an optimal assembly algorithm. The goal of this work is to advocate a new systematic approach to the design of assembly algorithms with an optimality or near-optimality guarantee.
机译:干扰是所有类型的无线网络中的主要现象,每当多个用户尝试通过共享介质进行通信时,就会发生干扰。当前的最新系统依赖于两种基本方法:正交化通信链路,或将干扰视为噪声。随着系统中用户数量的增加,这些方法都遭受性能迅速下降的困扰。近来,干扰对准已经成为减轻干扰的有希望的新观点。 Cadambe和Jafar(2008)观察到了干扰对准潜在好处的程度,他们表明对于时变或频率选择信道,在K用户干扰信道中可以实现K2的总自由度。在结果的上下文中,这意味着随着用户数量的增加,干扰基本上不会导致性能下降。然而,需要注意的是,随时间或频率而需要的独立信道实现的数量,即信道分集是不受限制的。实际的通信系统仅具有有限的信道分集,因此干扰对准的实际含义是不确定的:为了从干扰对准中获得实质性好处,需要多少信道分集?本文的第一部分着眼于这个问题。我们的第一个结果将三用户干扰信道的自由度表征为时间或频率分集的函数。接下来,我们将重点放在空间分集上,即在发射器和接收器处使用多个天线。我们描述了对称的三用户多输入多输出干扰信道的自由度。在进一步的对称假设下,该结果部分推广到任意数量的用户。本论文的第二部分从信息论的角度研究DNA测序。 DNA测序是现代生物学和医学的基础。 gun弹枪测序是使用的主要技术:从DNA序列中提取许多随机定位的短片段,称为读取,然后将这些读取组装起来以重建原始序列。在过去的二十年中,已经提出了许多组装算法,但是比较和评估它们很困难。为了澄清这一点,我们问:如果从任意DNA序列中采样到N个长度为L的读数,是否有可能实现某些目标概率1 –&epsi ;?成功的重建?我们表明答案取决于要组装的DNA序列的重复统计,并且我们针对许多参考基因组计算了这些统计。我们构造了一个下界,表明对于N和L的某些选择而言,重构是不可能的,并通过分析推导几种算法的性能(在重复统计方面)来补充这一点。在寻找与实际DNA数据的下限匹配的算法时,我们能够有条不紊地朝着最佳组装算法发展。这项工作的目的是提倡一种具有最优性或接近最优性保证的装配算法设计的新的系统方法。

著录项

  • 作者

    Bresler, Guy.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号