首页> 外文学位 >Multi-scale model of the stability of a laterally heated liquid bridge under the influence of an axial magnetic field.
【24h】

Multi-scale model of the stability of a laterally heated liquid bridge under the influence of an axial magnetic field.

机译:横向磁场桥在轴向磁场影响下的稳定性的多尺度模型。

获取原文
获取原文并翻译 | 示例

摘要

Thermocapillary flows, occurring in floating-zone semiconductor crystal growth, are studied using numerical and analytical linear stability analyses. In this process, a polycrystalline feed rod is passed through an optical heating source, where it melts and then re-solidifies into a single crystal. In microgravity, the system is characterized by a molten region suspended between the feed rod and the crystal, and held in place by surface tension. The temperature gradients on the molten free surface drive thermocapillary flow, which is susceptible to instabilities. These instabilities can lead to defects in the crystal lattice, and nonuniform dopant distribution, effectively ruining the properties of the crystal. This study investigates the use of magnetic fields in suppressing these instabilities. When a crystal is grown in the presence of a magnetic field, electric currents are generated in the conducting melt. These currents interact with the magnetic field, producing Lorentz body forces, which damp the thermocapillary flow, and delay the onset of transition. While this is the accepted explanation of magnetic damping in crystal growth, the process has yet to be successfully modeled. Furthermore, the mechanism of energy transfer, from the axisymmetric base state, to the perturbed flow, has not been described. The primary obstacle to modeling this process is obtaining sufficient resolution of the thin Hartmann boundary layers, which form perpendicular to the magnetic field at the solidification and melting fronts. A secondary challenge is due to the segregation of the flow into a strong convection cell near the free surface, and a nearly stagnant core region. To overcome these modeling obstacles, a multi-scale solution technique has been developed, which takes advantage of the Hartmann layers and flow segregation, by introducing an asymptotic solution in the strong magnetic field limit. This solution offers physical insight into the transition mechanism. At weak field strengths, improved numerical methods are used to extend the analysis by an order of magnitude over that of previous studies.
机译:使用数值和分析线性稳定性分析研究了在浮区半导体晶体生长中发生的热毛细管流动。在此过程中,多晶进料棒穿过光学加热源,在此处熔化,然后重新凝固成单晶。在微重力下,该系统的特征是悬浮在进料棒和晶体之间的熔融区域,并通过表面张力保持在适当位置。熔融自由表面上的温度梯度会驱动热毛细流,这很容易引起不稳定。这些不稳定性会导致晶格中的缺陷和不均匀的掺杂剂分布,从而有效地破坏了晶体的性能。这项研究调查了使用磁场来抑制这些不稳定性。当晶体在磁场的作用下生长时,导电熔体中会产生电流。这些电流与磁场相互作用,产生洛伦兹体力,该力减弱了热毛细流,并延迟了转变的开始。尽管这是晶体生长中磁阻尼的公认解释,但该过程尚未成功建模。此外,还没有描述从轴对称基态到扰动流的能量转移机理。对该过程进行建模的主要障碍是获得足够的分辨率的薄型哈特曼边界层,该边界层垂直于凝固和熔化前沿的磁场形成。第二个挑战是由于流动被隔离到自由表面附近的强对流单元和几乎停滞的核心区域中。为了克服这些建模障碍,已经开发了一种多尺度求解技术,该技术通过在强磁场范围内引入渐近解来利用Hartmann层和流分离。该解决方案提供了对过渡机制的物理洞察力。在弱磁场强度下,采用改进的数值方法将分析范围扩大了以前的研究范围。

著录项

  • 作者

    Houchens, Brent Charles.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Applied Mechanics.; Engineering Mechanical.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号