首页> 外文学位 >Advances in the engineering science of immiscible polymer blends: A powder route for delicate polymer precursors and a highly renewable polyamide/terephthalate blend system.
【24h】

Advances in the engineering science of immiscible polymer blends: A powder route for delicate polymer precursors and a highly renewable polyamide/terephthalate blend system.

机译:不混溶的聚合物共混物的工程科学进展:精细聚合物前体和高度可再生的聚酰胺/对苯二甲酸酯共混体系的粉末路径。

获取原文
获取原文并翻译 | 示例

摘要

Powder processing of thermoplastic polymer composites is an effective way to achieve a high level of component homogenization in raw blends prior to melt processing, thus reducing the thermal and shear stress on the components. Polymer blends can be prepared that would otherwise not be possible due to thermodynamic incompatibility. Evaluation of this concept was conducted by processing PMMA and HDPE micron sized powders which were characterized using DSC and rheology. Optical microscopy and SEM, showed that high-quality, fine domain sized blends can be made by the compression molding process. Silica marker spheres were used to qualitatively assess the level dispersive mixing. EDS chemical analysis was effective in providing image contrast between PMMA and HDPE based on the carbonyl and ester oxygen. EDS image maps, combined with secondary electron images show that compression molding of blended powder precursors produces composites of comparable homogeneity and domain size as extrusion processing. FTIR proved valuable when assessing the intimacy of the constituents at the interface of the immiscible domains. The formation of an in-situ, PMMA nano-network structure resulting from solvent extraction and redeposition using DMF was uniquely found on the surface of these immiscible polymer blends. This work has shown that powder processing of polymers is an effective means to melt processed fragile polymers to high quality blends.;Recently, efforts towards the development of sustainable materials have evolved due in part to the increase in price and limited supply of crude oil. Immiscible polymer blending is a paradigm that enables synergistic material performance in certain instances where the composite properties are superior to the sum of the constituents. The addition of PA6,10 to PTT offers an opportunity to increase the bio-based content of PTT while simultaneously maintaining or improving mechanical properties. PA6,10 and PTT are immiscible polymers that can be blended into multi-phase blends with fine domain morphology. Initially, the blend compositions were estimated based on empirical relationships, subsequently the polymers were formulated and extruded. Extensive work was performed via EDS and rheological measuring to identify a co-continuous composition and to assess the validity of the empirical Jordhamo relationship.;Keywords: immiscible, polymers, blends, powders, compression molding, extrusion, PMMA, HDPE, bio-based, capillary rheometry, Jordhamo relationship, power law, PTT, PA6,10, self-assembled, DMF
机译:热塑性聚合物复合材料的粉末加工是在熔融加工之前在原料共混物中实现高水平组分均质化的有效方法,从而降低了组分上的热应力和剪切应力。可以制备由于热力学不相容性否则将不可能的聚合物共混物。通过处理使用DSC和流变学表征的PMMA和HDPE微米级粉末,对这一概念进行了评估。光学显微镜和SEM显示,可以通过压模工艺制备高质量,细小尺寸的混合物。二氧化硅标记球用于定性评估水平分散混合。 EDS化学分析可有效地提供基于羰基和酯氧的PMMA和HDPE之间的图像对比度。 EDS图像图与二次电子图像相结合显示,混合粉末前体的压缩成型可产生与挤出工艺相当的均质性和畴尺寸的复合材料。 FTIR在评估不混溶域的界面上的成分的亲密性时被证明很有价值。在这些不混溶的聚合物共混物的表面上,独特地发现了因使用DMF进行溶剂萃取和再沉积而形成的原位PMMA纳米网络结构。这项工作表明,对聚合物进行粉末加工是将加工后的易碎聚合物熔融成高质量共混物的有效手段。最近,部分由于价格上涨和原油供应有限而对开发可持续材料的努力有所发展。不混溶的聚合物共混是在复合材料性能优于成分总和的某些情况下实现协同材料性能的范例。在PTT中添加PA6,10可以增加PTT的生物基含量,同时保持或改善机械性能。 PA6,10和PTT是不混溶的聚合物,可以共混成具有精细域形态的多相共混物。最初,根据经验关系估算共混物的组成,然后将聚合物配制并挤出。通过EDS和流变学测量进行了大量工作,以确定共连续成分并评估经验Jordhamo关系的有效性。关键词:不混溶,聚合物,共混物,粉末,压塑,挤出,PMMA,HDPE,生物基,毛细管流变仪,Jordhamo关系,幂律,PTT,PA6,10,自组装,DMF

著录项

  • 作者

    Giancola, Giorgiana.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Materials Science.;Plastics Technology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号