首页> 外文学位 >The impact of decadal land cover change on the global warming potential of Beringian Arctic tundra.
【24h】

The impact of decadal land cover change on the global warming potential of Beringian Arctic tundra.

机译:年代际覆盖变化对白令北极苔原的全球变暖潜力的影响。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this study is to (1) determine how land cover in the Beringian Arctic changed in the last half century; (2) assess what biophysical properties control peak growing season land-atmosphere CO2 and CH4 exchange in multiple landscapes and land cover classes in Beringia; and (3) model how decadal land cover change in Beringia has altered peak growing season CO2 and CH4 exchange and global warming potential.;Using a campaign-style, snapshot sampling approach sixteen sites were visited in ten different landscapes throughout the Beringian Arctic between 2005 and 2008. Sites represented a broad range of arctic terrestrial ecosystems, and data collection included CO2 exchange, CH4 exchange, and a number of biophysical and spectral properties for the purpose of spatial scaling and model development. For seven landscapes, ground-truthed land cover maps were created from recent high-resolution Quickbird imagery. Using conservative assumptions regarding land cover change, modern land cover maps were used as baselines for the development of historic high-spatial-resolution land cover maps derived from aerial photography and declassified military imagery dating back to 1948. Using these multi-temporal coverages, trends in decade time scale land cover change were determined for each study landscape. Within Alaska, drier landscapes and open water cover classes expanded whereas wet vegetated land cover classes decreased in area. For Russian landscapes, shrub dominated land cover expanded wherever these were present and land cover generally shifted towards an expanse of wetter landscape vegetation types.;Multiple regression models were developed using field data. These were able to effectively predict CO2 and CH4 flux (R 2 = 0.70 and 0.66 respectively) for a range of vegetation types and landscapes at multiple locations in the Beringian Arctic. Originating from measurements taken during the snapshot sampling campaign, the models were relatively simple, spatially scalable models whose input parameters could be derived from automated ground and aerial/satellite based observation platforms. The effectiveness of these models suggests that predicting the GWP of landscapes across Beringia many multiple landscapes may only require the measurement of simple ecosystem measures and given the variety of landscapes within this study, these relationships may extend to other parts of the Arctic as well.;Ecosystem fluxes were then spatially extrapolated over the multi-temporal land cover maps to determine the impact of land cover change on CO2 and CH4 flux. Using the global warming potential (GWP) metric, we calculated the global warming potential of these landscapes in CO 2 equivalents (CO2e). Results suggest all landscapes were historic net sinks of carbon and remain net sinks of CO2e. Four of the seven sites appeared to become weaker sinks, while the remaining three sites became stronger sinks of CO2e. Decadal changes in CO 2 and CH4 flux as well as global warming did not appear to have any geographic associations. When the effect of land cover change on NDVI was calculated, most landscapes displayed a change in NDVI consistent with regional aggregations measured at coarse spatial scales (i.e. an increase for Alaskan landscapes, except for the Barrow and Atqasuk sites, and a decrease for Russian landscapes).;These findings build on the current understanding of the relationship between ecosystem structural structure and function change and draw attention to the importance of understanding how their spatio-temporal variation can affect global warming potential over decadal time scales. Findings also suggest that using simple set measurements within a network of automated sensors could allow the development of a cost-efficient network for monitoring fluxes. In the process of building ecosystem flux models, the novel snapshot-sampling approach developed in this study demonstrates the capacity for fast and efficient sampling of large areas in combination with remote sensing platforms. The simple models and capacities demonstrated here would benefit the future development of an integrated Arctic observing network. (Abstract shortened by UMI.).
机译:这项研究的目的是(1)确定在最近半个世纪中白令北极地区的土地覆盖如何变化; (2)评估哪些生物物理特性控制了在Beringia的多个景观和土地覆盖类别中生长期高峰期的大气CO2和CH4交换; (3)模拟白令海的年代际土地覆盖变化如何改变了生长期高峰期的CO2和CH4交换以及全球变暖的潜力。2005年,采用运动方式,快照抽样的方法,在整个白令北极地区的十个不同景观中访问了16个地点和2008年。这些站点代表了广泛的北极陆地生态系统,数据收集包括CO2交换,CH4交换以及一些生物物理和光谱特性,以用于空间缩放和模型开发。对于七个景观,根据最近的高分辨率Quickbird影像创建了真实的土地覆盖图。使用关于土地覆被变化的保守假设,现代土地覆被地图被用作发展历史性高空间分辨率土地覆被地图的基线,该历史取自航空摄影和可追溯到1948年的机密军事影像。使用这些多时间覆盖的趋势在十年中,针对每个研究景观确定了土地覆盖变化。在阿拉斯加内,较干燥的景观和开阔水域的覆盖率有所增加,而湿地植被的覆盖率则有所下降。对于俄罗斯景观而言,灌木占主导地位的土地覆盖面积会扩大,无论其存在于何处,并且土地覆盖范围通常会向广阔的湿润植被类型转移。;使用田间数据开发了多个回归模型。这些能够有效地预测白令北极地区多个地点的一系列植被类型和景观的CO2和CH4通量(分别为R 2 = 0.70和0.66)。这些模型源自快照采样活动中进行的测量,是相对简单的,空间可扩展的模型,其输入参数可以从自动地面和基于航空/卫星的观测平台得出。这些模型的有效性表明,预测整个白令众多景观的全球升温潜能值可能只需要测量简单的生态系统措施,并且鉴于本研究中景观的多样性,这些关系也可能扩展到北极的其他地区。然后在多时相土地覆盖图上对生态系统通量进行空间推断,以确定土地覆盖变化对CO2和CH4通量的影响。使用全球变暖潜能值(GWP)度量,我们以CO 2当量(CO2e)计算了这些景观的全球变暖潜能。结果表明,所有景观都是历史性的碳净汇,仍然是CO2e的净汇。七个地点中的四个似乎变成了较弱的汇,而其余三个地点则变成了更强的CO2e汇。 CO 2和CH 4通量的年代际变化以及全球变暖似乎没有任何地理联系。当计算土地覆盖变化对NDVI的影响时,大多数景观显示NDVI的变化与在粗略的空间尺度上测得的区域性聚集一致(即,除了Barrow和Atqasuk站点外,阿拉斯加景观有所增加,而俄罗斯景观则有所减少这些发现基于对生态系统结构与功能变化之间关系的当前理解,并提请人们注意了解其时空变化如何影响年代际尺度上的全球变暖潜力的重要性。研究结果还表明,在自动传感器网络中使用简单的设置测量值可以允许开发一种经济高效的网络来监控通量。在建立生态系统通量模型的过程中,本研究开发的新型快照采样方法展示了结合遥感平台对大面积区域进行快速高效采样的能力。这里展示的简单模型和功能将有益于集成北极观测网络的未来发展。 (摘要由UMI缩短。)。

著录项

  • 作者

    Lin, David Hwei-Len.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Biology Ecology.;Climate Change.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号