首页> 外文学位 >Genetics and functions of the SARS coronavirus spike protein.
【24h】

Genetics and functions of the SARS coronavirus spike protein.

机译:SARS冠状病毒刺突蛋白的遗传学和功能。

获取原文
获取原文并翻译 | 示例

摘要

The SARS-Coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. Investigations, described herein, have focused on the genetic manipulation of the SARS-CoV S glycoprotein in order to delineate functional domains within the protein. This was accomplished by incorporating single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl terminal truncations into the protein and investigating these mutants in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or adjacent but distinct regions, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulate the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The cysteine rich domains were further studied by constructing cysteine cluster to alanine mutants in order to ascertain their importance in the function of the protein. Results showed that the two cysteine clusters proximal to the transmembrane region were vital in the functioning of the spike protein in mediating cell-to-cell fusion. Mutagenesis of the acidic amino acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino acid motif may play a functional role in the retention of S at cell-surfaces. A panel of truncations for Bovine Coronavirus (BCoV) S was also constructed and compared to truncations made for the SARS-CoV S glycoprotein. It was found that the two sets of truncations had very little comparable effects on protein function when compared to one another. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression and cell fusion.
机译:SARS冠状病毒(SARS-CoV)是严重急性呼吸系统综合症(SARS)的病原体。 SARS-CoV峰值(S)糖蛋白在病毒进入和病毒诱导的细胞间融合过程中介导膜融合事件。本文所述的研究集中在SARS-CoV S糖蛋白的遗传操作上,以描绘蛋白质中的功能性结构域。这是通过将单点突变,簇到赖氨酸和簇到丙氨酸的突变以及羧基末端截短结合到蛋白质中并在瞬时表达实验中研究这些突变而实现的。 S糖蛋白氨基末端七肽重复序列的卷曲螺旋结构域,预期的融合肽或相邻但不同的区域发生了诱变,从而严重损害了S介导的细胞间融合,而细胞内转运和细胞表面表达却没有不利影响。令人惊讶地,17个氨基酸的羧基末端截短显着增加了S糖蛋白介导的细胞间融合,表明末端17个氨基酸调节了S融合特性。相比之下,与野生型S相比,截短26个或39个氨基酸分别消除两个内域富半胱氨酸基序中的一个或两个抑制了细胞融合。通过构建半胱氨酸簇以进一步研究富半胱氨酸域丙氨酸突变体,以确定其在蛋白质功能中的重要性。结果显示,跨膜区域附近的两个半胱氨酸簇在介导细胞间融合过程中对刺突蛋白的功能至关重要。 S糖蛋白的羧基末端的酸性氨基酸簇的诱变以及酸性簇中预测的磷酸化位点的修饰表明,该氨基酸基序可能在S保留在细胞表面上发挥功能性作用。还构建了一组牛冠状病毒(BCoV)S的截短图,并将其与SARS-CoV S糖蛋白的截短图进行了比较。已经发现,两组截短物相互比较时对蛋白质功能几乎没有可比较的影响。遗传分析表明,SARS-CoV S糖蛋白包含调节细胞融合的胞外域以及在细胞内转运,细胞表面表达和细胞融合中起作用的独特内域。

著录项

  • 作者

    Petit, Chad Michael.;

  • 作者单位

    Louisiana State University and Agricultural & Mechanical College.;

  • 授予单位 Louisiana State University and Agricultural & Mechanical College.;
  • 学科 Biology Molecular.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号