首页> 外文学位 >Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol.
【24h】

Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol.

机译:用于实验室和城市气溶胶的光谱气溶胶光散射和吸收。

获取原文
获取原文并翻译 | 示例

摘要

Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010.;Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations.;Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using a shell-core model, we verified, for the first time, that AEA can be as high as 1.6 even for non-absorbing coating on BC, suggesting that the organic coating need not be intrinsically brown to observe effects commonly attributed to BrC absorption. Additionally, for laboratory generated incense burning aerosols, AEA varied as lambda -4.5for wavelengths ranging from 355 to 1047 nm. In contrast, the wood smoke aerosols during winter had a much weaker wavelength dependence (lambda-1.1), comparable to that of traffic emission aerosols. During these observations, the multispectral SSA decreased with the wavelength for traffic-related emissions, yet it increased for biomass and incense burning aerosol. The strong spectral dependence was due to the enhanced light absorption by BrC at UV and blue wavelengths. In all cases, results of this analysis suggested that inefficient smoldering combustion processes can emit predominantly BrC, in comparison to high-temperature and flaming burning processes.;During the CARES field campaign, aerosols were dominated by biogenic emissions. Aerosol light absorption was modestly enhanced (lambda -1.6) at shorter wavelengths (355, 375, 405, and 532 nm) compared to 870 and 1047 nm, likely due to the spectral dependence of coating on BC. The secondary organic aerosol (SOA) mass concentration steadily increased in the latter half of the campaign, with strong 355 nm aerosol light scattering. Overall, results of this field campaign showed that the biogenic SOA was not BrC, i.e. it didn't have intrinsic characteristics near UV absorption. These results should be further tested and analyzed to assess the full implications of BrC aerosol light absorption.
机译:大气气溶胶会极大地影响气候,降低能见度,并引起人类健康问题。气溶胶的光吸收和散射是辐射传输模型中的重要因素。但是,这些特性与气候模型的巨大不确定性有关。此外,大气气溶胶的成分和大小差异很大。它们的光学特性高度依赖于波长。这项工作提出了整个紫外到近红外区域的气溶胶光吸收和散射的光谱依赖性。数据收集自2008年至2010年在内华达州里诺市。该研究还介绍了碳质气溶胶期间的气溶胶光学和物理性质以及2010年在萨克拉曼多地区进行的辐射效应研究(CARES)。;使用光声仪器(PA)进行了测量。 ),包括我们设计和制造的新型UV 355 nm PA。提出了三个主要类别的比较分析:(1)野火和交通排放产生的气溶胶;(2)实验室产生的冬季冬季城市气溶胶;以及(3)城市羽流和生物排放。在这些类别中,将讨论有关次要有机气溶胶(SOA),所谓的棕碳(BrC)和黑碳(BC)的光吸收的关键问题。努力通过应用壳核计算对城市和生物质燃烧气溶胶的排放和老化进行建模。气溶胶的多光谱PA测量使用光吸收和散射系数来计算吸收埃(AEA)指数和单散射反照率(SSA)。分析了AEA和SSA值以区分气溶胶来源。加利福尼亚野火气溶胶在405和870 nm处表现出很强的波长依赖性,其中AEA为λλ分别为405和870 nm,而交通排放气溶胶的波长依赖性相对较弱,而AEA的波长依赖性约为λ-1。通过使用壳核模型,我们首次验证了即使对于BC上的非吸收性涂层,AEA也可以高达1.6,这表明有机涂层不必固有地呈棕色即可观察到通常归因于BrC的效应吸收。此外,对于实验室产生的熏香气溶胶,对于355至1047 nm的波长,AEA变化为-4.5。相比之下,冬季的木烟气溶胶与波长排放气溶胶的波长依赖性要弱得多(λ-1.1)。在这些观测中,多光谱SSA随交通相关排放的波长而降低,但对于生物质和香熏气溶胶则增加。强烈的光谱依赖性归因于BrC在紫外线和蓝色波长下增强的光吸收。在所有情况下,该分析结果均表明,与高温和明火燃烧过程相比,低效的阴燃燃烧过程可主要排放BrC。在CARES野战期间,气溶胶以生物成因排放为主。与870和1047 nm相比,在较短的波长(355、375、405和532 nm),气溶胶的光吸收有所提高(λ-1.6),这可能是由于涂层对BC的光谱依赖性所致。在运动的后半段,次要有机气溶胶(SOA)的质量浓度稳定增加,并产生了355 nm的强气溶胶光散射。总体而言,这项野外活动的结果表明,生物型SOA并非BrC,即它在紫外线吸收附近没有内在特征。这些结果应进一步测试和分析,以评估BrC气溶胶光吸收的全部含义。

著录项

  • 作者

    Gyawali, Madhu S.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Atmospheric Sciences.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号