首页> 外文学位 >Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses.
【24h】

Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses.

机译:不连续变形分析在节理岩体中的应用研究。

获取原文
获取原文并翻译 | 示例

摘要

The Distinct Element Method (DEM) and Discontinuous Deformation Analysis (DDA) are the two most commonly used discrete element methods in rock mechanics. Discrete element approaches are computationally expensive as they involve the interaction of multiple discrete bodies with continuously changing contacts. Therefore, it is very important to ensure that the method selected for the analysis is computationally efficient. In this research, a general assessment of DDA and DEM is performed from a computational efficiency perspective, and relevant enhancements to DDA are developed.;In order to improve the computational efficiency of DDA, an alternative approach based on a more realistic rock joint behavior is developed in this research. In this approach, contacts are assumed to be deformable, i.e., interpenetrations of the blocks in contact are permitted. This eliminated the computationally expensive open-close iterative procedure adopted in DDA-Shi and enhanced its speed up to four times.;In order to consider deformability of the blocks in DDA, several approaches are reported. The hybrid DDA-FEM approach is one of them, although this approach captures the block deformability quite effectively, it becomes computationally expensive for large-scale problems. An alternative simplified uncoupled DDA-FEM approach is developed in this research. The main idea of this approach is to model rigid body movement and the block internal deformation separately. Efficiency and simplicity of this approach lie in keeping the DDA and the FEM algorithms separate and solving FEM equations individually for each block.;Based on a number of numerical examples presented in this dissertation, it is concluded that from a computational efficiency standpoint, the implicit solution scheme may not be appropriate for discrete element modelling. Although for quasi-static problems where inertia effects are insignificant, implicit schemes have been successfully used for linear analyses, they do not prove to be advantageous for contact-type problems even in quasi-static mode due to the highly nonlinear behavior of contacts.;The computational speed of DDA is observed to be considerably slower than DEM. In order to identify reasons affecting the computational efficiency of DDA, fundamental aspects of DDA and DEM are compared which suggests that they mainly differ in the contact mechanics, and the time integration scheme used. An in-depth evaluation of these aspects revealed that the open-close iterative procedure used in DDA which exhibits highly nonlinear behavior is one of the main reasons causing DDA to slow down.
机译:离散元方法(DEM)和不连续变形分析(DDA)是岩石力学中最常用的两种离散元方法。离散元素方法在计算上很昂贵,因为它们涉及多个离散物体与不断变化的触点之间的相互作用。因此,确保为分析选择的方法在计算上是有效的,这一点非常重要。在这项研究中,从计算效率的角度对DDA和DEM进行了总体评估,并对DDA进行了相关的改进。;为了提高DDA的计算效率,一种基于更现实的岩石节理行为的替代方法是在这项研究中开发的。在这种方法中,假设触点是可变形的,即允许接触的块相互渗透。这样就消除了DDA-Shi中采用的计算量大的开-闭迭代过程,并将其速度提高了四倍。为了考虑DDA中块的可变形性,报告了几种方法。混合DDA-FEM方法就是其中一种,尽管这种方法可以非常有效地捕获块的可变形性,但是对于大规模问题,它在计算上变得昂贵。本研究开发了另一种简化的简化非耦合DDA-FEM方法。这种方法的主要思想是分别模拟刚体运动和块内部变形。该方法的效率和简便性在于将DDA和FEM算法保持分开,并针对每个块分别求解FEM方程。基于本文给出的大量数值示例,得出的结论是,从计算效率的角度出发,隐式解决方案可能不适用于离散元素建模。尽管对于惯性影响不大的准静态问题,隐式方案已成功地用于线性分析,但由于触点的高度非线性行为,即使在准静态模式下,它们也没有证明对接触型问题有利。观察到DDA的计算速度比DEM慢得多。为了确定影响DDA计算效率的原因,比较了DDA和DEM的基本方面,这表明它们的主要区别在于接触机理和所使用的时间积分方案。对这些方面的深入评估表明,DDA中使用的显示高度非线性行为的开-闭迭代过程是导致DDA变慢的主要原因之一。

著录项

  • 作者

    Khan, Mohammad S.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Geotechnology.;Engineering Geological.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 259 p.
  • 总页数 259
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号