首页> 外文学位 >Investigating fatty acid biosynthesis within the algal chloroplast using Chlamydomonas reinhardtii as a model.
【24h】

Investigating fatty acid biosynthesis within the algal chloroplast using Chlamydomonas reinhardtii as a model.

机译:使用莱茵衣藻(Chlamydomonas reinhardtii)作为模型研究藻类叶绿体中的脂肪酸生物合成。

获取原文
获取原文并翻译 | 示例

摘要

As finite petroleum reserves run their course and combustion-related CO2 emissions rise concerns about global warming, humanity is faced with the challenge of finding new sources of energy that are carbon-neutral, renewable and sustainable to meet the growing demand. Photosynthetic organisms convert solar energy and CO2 directly into metabolic products that can serve as fungible biofuels. Microalgae are particularly attractive as a biodiesel feedstock, as they produce oil in high yields, grow at fast rates in habitats not suitable for conventional agriculture, and do not compete with the food supply. However, oil accumulation occurs under environmental stress, which compromises biomass productivity, and algal fatty acids are not ideal for biodiesel quality. The ability to manipulate algal fatty acid biosynthesis would thus be a significant stride towards developing algae as a biodiesel feedstock.;In fatty acid biosynthesis within an algal chloroplast, an acyl carrier protein (ACP) tethers the growing fatty acid as it undergoes iterative cycles of elongation, and a thioesterase (TE) domain catalyzes the release of a mature fatty acid from the ACP. As plant TEs specific for certain chain length fatty acids have altered the fatty acid profile of transgenic plants and bacteria, this has emerged as a promising strategy to modify algal fatty acid content to fashion an optimized biodiesel feedstock.;The work outlined in this thesis aims to investigate intermolecular interactions in algal fatty acid biosynthesis to facilitate engineering. A novel strategy was employed in which a chemical probe inspired by the enzymatic activity of the algal TE was synthesized, attached to the algal ACP chemoenzymatically, and used to trap algal ACP-TE interactions in vitro. No protein-protein interactions were detected between plant TEs and the algal ACP in vitro, and thus plant TEs did not elicit the desired phenotype when engineered into the algal chloroplast. Using protein-protein interactions as a means to control product identity may shift the paradigm towards rationally designed engineering approaches to optimize algae as a bioenergy source.;Renewable energy outreach and education has been an indispensable facet of this work to generate awareness and instill passion for sustainable energy in our future scientists.
机译:随着有限的石油储备不断发展,以及与燃烧相关的二氧化碳排放引起人们对全球变暖的担忧,人类面临着寻找碳中和,可再生和可持续的新能源以满足不断增长的需求的挑战。光合生物将太阳能和二氧化碳直接转化为可以作为可替代生物燃料的代谢产物。微藻作为生物柴油原料特别有吸引力,因为它们以高产量生产石油,在不适合常规农业的栖息地中以快速的速度生长,并且不与食物供应竞争。但是,油的积累是在环境压力下发生的,这会损害生物质的生产率,藻类脂肪酸对于生物柴油的质量也不理想。因此,操纵藻类脂肪酸生物合成的能力将是将藻类发展为生物柴油原料的重要一步。在藻类叶绿体中的脂肪酸生物合成中,酰基载体蛋白(ACP)会随着不断循环的脂肪酸而束缚着不断增长的脂肪酸延长,硫酯酶(TE)域催化从ACP释放成熟脂肪酸。随着特定于特定链长脂肪酸的植物TEs改变了转基因植物和细菌的脂肪酸谱,这已成为一种有前景的策略,可以改变藻类脂肪酸的含量以形成一种优化的生物柴油原料。研究藻脂肪酸生物合成中的分子间相互作用,以促进工程设计。采用了一种新颖的策略,其中合成了受藻类TE的酶活性启发的化学探针,通过化学酶法将其附着于藻类ACP,并用于捕获体外的藻类ACP-TE相互作用。在体外未检测到植物TE与藻类ACP之间的蛋白质-蛋白质相互作用,因此,当工程改造成藻类叶绿体时,植物TEs不会引发所需的表型。使用蛋白质-蛋白质相互作用作为控制产品身份的手段,可能会将范式转向合理设计的工程方法,以优化藻类作为生物能源的来源。可再生能源推广和教育一直是这项工作不可或缺的方面,以引起人们的关注并为之灌输激情我们未来科学家中的可持续能源。

著录项

  • 作者

    Blatti, Jillian L.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号