首页> 外文学位 >Validation of computational fluid dynamic simulations of membrane artificial lungs with X-ray imaging.
【24h】

Validation of computational fluid dynamic simulations of membrane artificial lungs with X-ray imaging.

机译:用X射线成像验证膜人工肺的计算流体动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

The functional performance of membrane oxygenators is directly related to the perfusion dynamics of blood flow through the fiber bundle. Non-uniform flow and design characteristics can limit gas exchange efficiency and influence susceptibility of thrombus development in the fiber membrane. Computational fluid dynamics (CFD) is a powerful tool for predicting properties of the flow field based on prescribed geometrical domains and boundary conditions. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods.;A novel approach was developed using biplane X-ray digital subtraction angiography to visualize flow through a commercial membrane artificial lung at 1--4.5 L/min. Permeability based on the coefficients of the Ergun equation, alpha and beta, were experimentally determined to be 180 and 2.4, respectively, and the equivalent spherical diameter was shown to be approximately equal to the outer fiber diameter. For all flow rates tested, biplane image projections revealed non-uniform radial perfusion through the annular fiber bundle, yet without flow bias due to the axisymmetric position of the outlet. At 1 L/min, approximately 78.2% of the outward velocity component was in the radial (horizontal) plane verses 92.0% at 4.5 L/min. The CFD studies were unable to predict the non-radial component of the outward perfusion.;Two-dimensional velocity fields were generated from the radiographs using a cross-correlation tracking algorithm and compared with analogous image planes from the CFD simulations. Velocities in the non-porous regions differed by an average of 11% versus the experimental values, but simulated velocities in the fiber bundle were on average 44% lower than experimental. A corrective factor reduced the average error differences in the porous medium to 6%. Finally, biplane image pairs were reconstructed to show 3-D transient perfusion through the device.;The methods developed from this research provide tools for more accurate assessments of fluid flow through membrane oxygenators. By identifying non-invasive techniques to allow direct analysis of numerical and experimental velocity fields, researchers can better evaluate device performance of new prototype designs.;Keywords: Artificial Lung, X-ray Angiography, Computational Fluid Dynamics, Porous Media, Experimental Validation Methods.
机译:膜式充氧器的功能性能与流过纤维束的血流的灌注动力学直接相关。流量和设计特性不均匀会限制气体交换效率,并影响纤维膜中血栓形成的敏感性。计算流体力学(CFD)是基于规定的几何域和边界条件预测流场特性的强大工具。膜式充氧器中数值结果的验证主要基于实验压力测量,由于纤维膜的不透明性和光学测速方法的局限性,很少强调确定速度场。数字减影血管造影术以1--4.5 L / min的速度可视化通过商用膜人工肺的流量。根据Ergun方程的系数α和β的渗透率分别通过实验确定为180和2.4,等效球形直径显示为近似等于外部纤维直径。对于所有测试的流速,双平面图像投影显示通过环形纤维束的径向灌注不均匀,但由于出口的轴对称位置而没有流动偏斜。在1 L / min时,向外速度分量的大约78.2%在径向(水平)平面中,而在4.5 L / min时为92.0%。 CFD研究无法预测向外灌注的非径向分量。;使用互相关跟踪算法从射线照片生成二维速度场,并将其与CFD模拟中的类似图像平面进行比较。与实验值相比,无孔区域的速度平均相差11%,但纤维束中的模拟速度平均比实验值低44%。校正因子将多孔介质中的平均误差差异降低到6%。最终,重建了双平面图像对,以显示通过该设备的3-D瞬态灌注。这项研究开发的方法为更准确地评估通过膜式充氧器的流体流动提供了工具。通过识别非侵入性技术以直接分析数值和实验速度场,研究人员可以更好地评估新原型设计的设备性能。关键词:人工肺,X射线血管造影,计算流体力学,多孔介质,实验验证方法。

著录项

  • 作者

    Jones, Cameron Christopher.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号