首页> 外文学位 >Improving atomistic simulations to predict deformation and fracture.
【24h】

Improving atomistic simulations to predict deformation and fracture.

机译:改进原子模拟以预测变形和断裂。

获取原文
获取原文并翻译 | 示例

摘要

Atomistic simulations can illuminate detailed mechanisms of brittle and ductile fracture and plasticity. However, there are many limitations to these simulations like short timescales, small spatial scales, and limitations of the discretization. Using molecular dynamics (MD) and multiscale methods, adaptations can be made to allow MD to answer problems relevant to engineers. In the first of three examples, MD is adapted to simulate brittle fracture by changing the discretization and allowing permanent damage between particles. By changing the discretization, specific mechanisms inherent to MD can be suppressed to allow accurate, macroscopic simulations of dynamic fragmentation of brittle materials. Second, the timescale available to MD is extended in a concurrent multiscale method (CADD) combined with accelerated MD. This combined approach allows for microseconds of simulation time at experimentally achievable loading rates. The method is applied to crack opening in aluminum alloys, and the effect of the loading rate on crack growth mechanisms is observed. From the results, it is clear that crack growth mechanisms depend greatly on the rate of the far-field loading. Third, the effect of aging on fatigue crack growth is studied by varying the resistance to dislocation motion in the dislocation dynamics region of CADD. Only in a multiscale simulation like CADD, can dislocation pileups reaching microns into the material interact with the atomic-scale mechanisms at a crack tip. The results of the simulations indicated that increasing the friction force raises the fatigue crack threshold. Also, a transition from stage I fatigue crack growth to stage II fatigue crack growth occurs by dislocations shielding dislocation nucleation on the primary slip plane. These observations support the conclusion that the fatigue crack growth threshold is controlled by the spacing between obstacles to dislocation glide, which is consistent with experimental observations.
机译:原子模拟可以阐明脆性和延性断裂以及可塑性的详细机制。但是,这些模拟有很多局限性,例如时间尺度短,空间尺度小以及离散化的局限性。使用分子动力学(MD)和多尺度方法,可以进行修改以使MD能够回答与工程师相关的问题。在三个示例的第一个示例中,MD可以通过更改离散度并允许粒子之间的永久损坏来模拟脆性断裂。通过改变离散化,可以抑制MD固有的特定机制,从而可以对脆性材料的动态破碎进行精确的宏观模拟。其次,通过并发多尺度方法(CADD)与加速的MD相结合,可以扩展MD可用的时间范围。这种组合方法允许在实验上可达到的加载速率下实现微秒的仿真时间。将该方法应用于铝合金的裂纹开裂,观察了加载速率对裂纹扩展机理的影响。从结果可以清楚地看出,裂纹扩展机制很大程度上取决于远场载荷的速率。第三,通过改变CADD位错动力学区域中对位错运动的抵抗力,研究了时效对疲劳裂纹扩展的影响。只有在像CADD这样的多尺度模拟中,位错堆积达到微米级的材料才能与裂纹尖端的原子尺度机制相互作用。仿真结果表明,增加摩擦力会提高疲劳裂纹阈值。同样,通过位错屏蔽了主滑移面上的位错形核,发生了从I期疲劳裂纹扩展到II期疲劳裂纹扩展的过渡。这些观察结果支持以下结论:疲劳裂纹扩展阈值受位错滑移障碍物之间的间距控制,这与实验观察结果一致。

著录项

  • 作者

    Baker, Kristopher Learion.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Applied Mechanics.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号