首页> 外文学位 >Compressed Sensing Receivers: Theory, design, and performance limits.
【24h】

Compressed Sensing Receivers: Theory, design, and performance limits.

机译:压缩传感接收器:理论,设计和性能限制。

获取原文
获取原文并翻译 | 示例

摘要

The past 50 years have seen tremendous developments in electronics due to the rise and rapid development of IC-fabrication technology [1]. In addition to the production of cheap and abundant computing resources, another area of rapid advancement has been wireless technologies. While the central focus of wireless research has been mobile communication, an area of increasing importance concerns the development of sensing/spectral applications over bandwidths exceeding multiple GHz. Such systems have many applications ranging from scientific to military. Although some solutions exist, their large size, weight, and power make more-efficient solutions desirable.;At present, one of the principal bottlenecks in designing such systems is the power consumption of the back-end ADCs at the required digitization rate. ADCs are a dominant source of power consumption; it is also often the case that ADC block specifications are used to determine parameters for the rest of the signal chain, such as the RF front-end and the DSP-core which processes the digitized samples [2]. Historically, increases in system bandwidth have come from developing ADCs with superior performance.;In contrast to improving ADC performance, this work presents a system-level approach with the goal of minimizing the required digitization rate for observation of a given effective instantaneous bandwidth (EIBW). The approach was inspired by the field of compressed sensing [3--5]. Loosely stated, CS asserts that samples which represent random projections can be used to recover sparse and/or compressible signals with what was previously thought to be insufficient information. The research in this thesis bridges the disparate areas of RF/Mixed-Signal IC design and CS; the primary contributions of this thesis include: the establishment of physical feasibility of CS-based receivers through implementation of the first-ever fully-integrated high speed CS-based front-end known as the random-modulation pre-integrator (RMPI) [6--9], and the development of a principled design methodology based on a rigorous analytical and empirical study of the system.;The 8-channel RMPI was implemented in 90 nm CMOS and was validated by physical measurements of the fabricated chip. The implemented RMPI achieves an EIBW of 2 GHz, with > 54 dB of dynamic range. Most notably, the aggregate digitization rate is fagg = 320 Msps, 12:5x lower than the Nyquist rate.;[1] G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, no. 8, pp. 114--117, April 19, 1965. [2] B. Murmann, "Trends in low-power, digitally assisted A/D conversion," IEICE Trans. Electron., vol. E93-C, no. 6, pp. 718--727, 2010. [3] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489--509, 2006. [4] D. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289--1306, 2006. [5] E. J. Candes, "Compressive sampling," Int. Cong. Math., vol. 3, pp. 1433--1452, 2006. [6] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and A. Emami-Neyestanak, "Design and implementation of a fully integrated compressed-sensing signal acquisition system," in Proc. Int. Conf. on Acoustics Speech and Sig. Processing , Kyoto, Japan, 2012. [7] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and A. Emami-Neyestanak, "A 10M--2GHz 12.5x sub-Nyquist rate receiver in 90nm CMOS," Proc. of IEEE Radio Freq. Integrated Cir. Conf. (RFIC), accepted for presentation, 2012. [8] J. N. Laska, S. Kirolos, M. F. Duarte, T. Ragheb, R. G. Baraniuk, and Y. Massoud, "Theory and implementation of an analog-to-information converter using random demodulation," in Proc. IEEE ISCAS, New Orleans, May 2007, pp. 1959--1962. [9] J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg, and R. G. Baraniuk, "Beyond Nyquist: Efficient sampling of sparse bandlimited signals," IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 520--544, 2010.
机译:在过去的50年中,由于IC制造技术的兴起和快速发展,电子技术取得了长足发展[1]。除了生产廉价和丰富的计算资源外,无线技术也是另一个快速发展的领域。尽管无线研究的中心焦点一直是移动通信,但越来越重要的领域涉及在超过多个GHz的带宽上传感/频谱应用的开发。这样的系统具有从科学到军事的许多应用。尽管存在一些解决方案,但它们的大尺寸,重量和功率使得更有效的解决方案是可取的。目前,设计此类系统的主要瓶颈之一是后端ADC在所需数字化速率下的功耗。 ADC是功耗的主要来源。通常,通常使用ADC模块规范来确定其余信号链的参数,例如处理数字化样本的RF前端和DSP内核[2]。从历史上看,系统带宽的增加源于开发性能卓越的ADC。与提高ADC性能相反,这项工作提出了一种系统级方法,其目标是最小化观察给定有效瞬时带宽(EIBW)所需的数字化速率。 )。该方法受到压缩感测领域的启发[3--5]。松散地说,CS断言代表随机投影的样本可用于恢复稀疏和/或可压缩信号,而以前认为这些信息不足。本文的研究跨越了RF /混合信号IC设计和CS的不同领域。本论文的主要贡献包括:通过实现有史以来第一个完全集成的基于高速CS的高速前端,即随机调制预积分器(RMPI),来实现基于CS的接收机的物理可行性[6]。 --9]以及基于系统的严格分析和经验研究的原理设计方法的开发。8通道RMPI在90 nm CMOS中实现,并通过对制成芯片的物理测量进行了验证。实施的RMPI实现了2 GHz的EIBW,动态范围> 54 dB。最值得注意的是,总的数字化速率为fagg = 320 Msps,比奈奎斯特速率低12:5倍。[1] G. E. Moore,“将更多的组件填充到集成电路上”,《电子学》第一卷。 38号1965年4月19日,第8页,第114--117页。[2] B. Murmann,“低功耗数字辅助A / D转换的趋势”,IEICE Trans。电子体积E93-C,不。 ,第6卷,第718--727页,2010年。[3] E. J. Candes,J。Romberg和T. Tao,“健壮的不确定性原理:根据高度不完整的频率信息进行精确的信号重构”,IEEE Trans。通知。理论卷。 52号2,第489--509页,2006年。[4] D. Donoho,“压缩感测”,IEEE Trans。通知。理论卷。 52号,第4卷,第1289--1306页,2006年。[5] E. J. Candes,“压缩采样”,诠释。 ong数学卷3,第1433--1452页,2006年。[6] J. Yoo,S。Becker,M。Loh,M。Monge,E。Candes和A. Emami-Neyestanak,“完全集成压缩的设计和实现传感信号采集系统”,Proc。诠释Conf。关于声学演讲和签名。 Processing,日本京都,2012年。[7] J. Yoo,S。Becker,M。Loh,M。Monge,E。Candes和A. Emami-Neyestanak,“ 10M--2GHz 12.5x次奈奎斯特速率90nm CMOS接收器。” IEEE Radio Freq。集成Cir。 Conf。 (RFIC),已接受演示,2012年。[8] JN Laska,S。Kirolos,MF Duarte,T.Ragheb,RG Baraniuk和Y. Massoud,“使用随机解调的模数转换器的理论和实现”中的内容。 IEEE ISCAS,新奥尔良,2007年5月,第1959--1962页。 [9] J. A. Tropp,J。N. Laska,M。F. Duarte,J。Romberg和R. G. Baraniuk,“超越奈奎斯特:稀疏带限信号的有效采样”,IEEE Trans。通知。理论卷。 56号1,第520--544页,2010年。

著录项

  • 作者

    Yoo, Juhwan.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号