首页> 外文学位 >Local and global dryout in two-phase microgap cooling.
【24h】

Local and global dryout in two-phase microgap cooling.

机译:两阶段微间隙冷却中的局部和全局变干。

获取原文
获取原文并翻译 | 示例

摘要

Limitations in advancements in electronic technology and further development of new technology are due to inadequate thermal management. As Moore's Law continues to drive semiconductor technology, the capabilities of conventional thermal management methods are falling behind the constantly changing and increasing needs of the electronic industry. Roadmap projections for the high-performance chip category suggest that the maximum chip power dissipation will exceed 500 W, and the chip heat flux will exceed 150 W/cm2 within the next few years. Research currently focuses on two-phase cooling techniques due to their potential to meet the thermal management needs of leading-edge electronic technology. Potential solutions currently being studied include spray cooling, immersion cooling, micro heat pipes, and microgap cooler. Unlike many current thermal management devices, microgap cooler eliminate the high and problematic thermal contact resistance, by allowing direct cooling of an electronic component by the flow of dielectric liquid across the back surface of the chip or substrate. The heat dissipation capability of such microgap coolers is further enhanced by two-phase flow that develops in the microgap channel, producing higher heat transfer coefficients than achievable by single-phase forced convection with that same fluid. In addition, due to the potential utilization of the intrinsic gaps between chips and within the packaging enclosures in both 2.5D (using interposers) and 3D configurations, microgap coolers provide a promising solution to the challenging problem of high-density heat removal. Despite the many advantages of two-phase microgap coolers, much is still not understood about the physics that governs this thermal management technique and the phenomena that limit its performance.
机译:电子技术的进步和新技术的进一步发展的局限性是由于热管理不足所致。随着摩尔定律继续推动半导体技术的发展,传统热管理方法的功能已经落后于电子行业不断变化和不断增长的需求。高性能芯片类别的路线图预测表明,在未来几年内,最大芯片功耗将超过500 W,芯片热通量将超过150 W / cm2。由于两相冷却技术可以满足前沿电子技术的热管理需求,因此目前的研究重点是两相冷却技术。当前正在研究的潜在解决方案包括喷雾冷却,浸没冷却,微型热管和微型间隙冷却器。与许多当前的热管理设备不同,微间隙冷却器通过允许电介质液体流过芯片或基板的背面直接冷却电子组件,从而消除了高而有问题的热接触电阻。这种微间隙冷却器的散热能力通过在微间隙通道中发展的两相流而得到了进一步增强,与同一种流体的单相强制对流相比,产生的传热系数更高。此外,由于在2.5D(使用中介层)和3D构造中可能利用芯片之间和封装外壳内的固有间隙,因此,微间隙冷却器为解决高密度散热的难题提供了有希望的解决方案。尽管两相微间隙冷却器具有许多优点,但对于控制这种热管理技术的物理原理以及限制其性能的现象,人们仍然知之甚少。

著录项

  • 作者

    Sheehan, Jessica R.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号