首页> 外文学位 >Radiation from small-scale magnetic field turbulence: Implications for gamma-ray bursts and laboratory astrophysical plasmas.
【24h】

Radiation from small-scale magnetic field turbulence: Implications for gamma-ray bursts and laboratory astrophysical plasmas.

机译:小规模磁场湍流的辐射:对伽马射线爆发和实验室天体物理等离子体的影响。

获取原文
获取原文并翻译 | 示例

摘要

Relativistic charged particles moving within regions of small-scale magnetic field turbulence radiate as they undergo transverse accelerations reflective of the magnetic field variation along the particle's path. For a particle of Lorentz factor gamma, relativistic beaming concentrates the bulk of the particle's emission within a small angle 1/gamma from the particle's forward direction. Synchrotron radiation is produced when large-scale magnetic fields cause the charged particles to gyrate, with the resulting radiation spectrum being primarily determined by the intermittent sweep of the relativistic beaming cone past the direction to the observer. In small-scale magnetic field turbulence, magnetic fields may be locally strong but varies over sufficiently small scales that the particle's emission is more consistently oriented towards a particular direction. Consequently, deflection effects cease to dominate the observed spectrum and the standard synchrotron model no longer applies. In this dissertation, we focus on the strong jitter radiation regime, in which the field varies over sufficiently short scales that the particle is never substantially deviated from a straight line path and an observer in the particle's forward direction receives consistently strong radiation over many correlation lengths of the magnetic field. We develop the general jitter radiation solutions for such a case and demonstrate that the resulting radiation spectrum differs notably from the synchtrotron spectrum and depends directly on the spectral distribution of the magnetic field encountered by the particle.;The Weibel-like filamentation instability generates small-scale magnetic field turbulence through current filamentation in counterstreaming particle populations, such as may be found at or near propagating shock fronts, in outflow from regions of magnetic reconnection, or from a variety of other scenarios producing an anisotropic particle velocity distribution. The current filamentation produces an anisotropy in magnetic field distribution that causes the jitter radiation spectrum to be sensitive to the radiating particle's orientation with respect to the filamentation axis. Because the spectrum observed from any given direction will be dominated by emission from particle's moving along that particular line-of-sight, this results in a natural angular dependence of the jitter radiation spectrum.;We explore the implications of jitter radiation's spectral sensitivity to the field anisotropy produced by the Weibel-like filamentation instability to relevant astrophysical and laboratory plasma scenarios. We calculate the jitter radiation spectra that may be produced in a high-energy density laboratory plasma by using quasi-monoenergetic electron beams to generate and then probe a region of current filamentation, and show that the jitter radiation may be used as a radiative diagnostic to determine features of the magnetic field distribution within this region.;For gamma-ray bursts, this instability may play a significant role in generating magnetic field strength from relativistic collisionless shocks or other particle acceleration mechanisms. We show that the viewing angle dependence of the jitter radiation spectrum can result in a rapidly time-evolving spectrum whose hard-to-soft evolution, synchrotron-violating low-energy spectral indices, and correlation between low-energy spectral hardness and the flux at peak energy may explain trends noticed in time-resolved GRB spectral evolution. We generate the jitter radiation spectra as would be produced in the co-moving frame by a single, instantantaneously-illuminated shock front, which may then be relativistically transformed with appropriate geometry into a time-evolving spectrum and multiple such signals assembled to produce "synthetic" GRB for comparison with observations.
机译:在小规模磁场湍流区域内移动的相对论带电粒子会受到横向加速度的辐射,从而反映出沿着粒子路径的磁场变化。对于洛伦兹因子伽玛的粒子,相对论光束将粒子发射的大部分集中在与粒子向前方向成1 /γ的小角度内。当大范围的磁场使带电粒子旋转时,产生同步辐射,辐射光谱主要由相对论射束的间歇性掠过观察者方向确定。在小规模的磁场湍流中,磁场可能是局部强磁场,但会在足够小的尺度上变化,以使粒子的发射更一致地朝向特定方向。因此,偏转效应不再占主导地位,而标准同步加速器模型不再适用。在本文中,我们关注强抖动辐射机制,该领域的电场在足够短的尺度上变化,以至于粒子从根本上不会偏离直线路径,并且粒子向前的观察者会在许多相关长度上持续收到强辐射。磁场我们针对这种情况开发了通用的抖动辐射解决方案,并证明了所产生的辐射光谱与同步加速器光谱显着不同,并且直接取决于粒子所遇到的磁场的光谱分布。在逆流粒子群中通过电流丝化产生的大规模磁场湍流,例如可能在传播的冲击锋面处或附近,从磁重连接区域流出的电流中,或从产生各向异性粒子速度分布的各种其他情况中发现。当前的细丝化会在磁场分布中产生各向异性,从而导致抖动辐射光谱对辐射粒子相对于细丝化轴的方向敏感。因为从任何给定方向观察到的光谱都将受到粒子沿着该特定视线运动的发射的控制,所以这导致了抖动辐射光谱的自然角度依赖性。像Weibel样的丝状失稳对相关的天体物理学和实验室等离子体情景所产生的磁场各向异性。我们通过使用准单能电子束生成并探测电流丝化区域来计算在高能量密度实验室等离子体中可能产生的抖动辐射光谱,并表明该抖动辐射可以用作诊断辐射的方法。确定该区域内磁场分布的特征。对于伽马射线爆发,这种不稳定性可能在相对论无碰撞冲击或其他粒子加速机制产生磁场强度中起重要作用。我们表明,抖动辐射频谱的视角依赖性可以导致快速演化的频谱,该频谱难以软演化,违反同步加速器的低能谱指数以及低能谱硬度与通量之间的相关性峰值能量可能解释了时间分辨GRB频谱演化中注意到的趋势。我们生成一个抖动辐射光谱,该光谱由一个共同运动的框架中的单个瞬时照明的激波锋产生,然后可以通过相对论将其以适当的几何形状相对论地转换为一个随时间变化的光谱,并组合多个这样的信号以产生“合成的” “ GRB与观察结果进行比较。

著录项

  • 作者

    Reynolds, Sarah J.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Physics Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号