首页> 外文学位 >Effects of spatial and temporal variability in vegetation, soil moisture, and depth of thaw on modeled evaporation estimates in Arctic coastal plain ecosytems.
【24h】

Effects of spatial and temporal variability in vegetation, soil moisture, and depth of thaw on modeled evaporation estimates in Arctic coastal plain ecosytems.

机译:北极沿海平原生态系统中植被,土壤湿度和解冻深度的时空变化对模拟蒸发估算的影响。

获取原文
获取原文并翻译 | 示例

摘要

Evapotranspiration (ET) is a key link between the surface energy, carbon and water balances of Arctic tundra ecosystems. Because of the sensitivity of Arctic ecosystems to future change, understanding the links between changes in the surface energy, carbon and water balances are important for predicting the impacts of climate change on the global water, energy and carbon cycles. Given that the ET process is acutely non-linear, using time and space averaged inputs in evaporation models may potentially lead to significant errors. It was hypothesized that heterogeneity associated with permafrost dynamics, soil moisture, and vegetation (vascular/non-vascular) would lead to large uncertainties in model estimates of ET. Therefore, this study investigated the significance of this heterogeneity on modeled ET estimates Arctic Coastal Plain ecosystems. The significance of these effects was investigated using a combination of field based soil moisture measurements and a modified version of the BIOME BGC model. Results indicated that there was substantial variability in soil moisture over small areas which was controlled by a combination of micro- and macro-topography. Modeling results indicated that the BIOME BGC model did not provide good estimates of ET. Therefore, the model was adapted to Arctic coastal plain environments by including: (1) a water storage and vertical drainage/infiltration routine that accounts for permafrost and non-vascular vegetation (mosses), (2) a new representation of energy available at the surface that incorporates standing dead vegetation and ground heat flux, (3) a two step background evaporation routine that simulates both moss and open water evaporation. The modifications resulted in a new model, Arctic BIOME BGC that significantly reduced the random and systematic errors in estimated ET when compared to eddy flux tower measurements. However, the modifications made in Arctic BIOME BGC added complexity and a number of new parameters. The relative importance of these new adaptations and their associated parameters was investigated using a sensitivity analysis. Results from the sensitivity analysis indicated that the model was highly sensitive to the majority of the new parameters indicating that the new process representations added in Arctic BIOME BGC were important for modeling ET in Arctic coastal plain ecosystems.
机译:蒸散量(ET)是北极苔原生态系统的表面能,碳和水平衡之间的关键环节。由于北极生态系统对未来变化的敏感性,因此了解表面能,碳和水平衡变化之间的联系对于预测气候变化对全球水,能源和碳循环的影响非常重要。鉴于ET过程是非常非线性的,因此在蒸发模型中使用时间和空间平均输入可能会导致重大错误。据推测,与多年冻土动力学,土壤湿度和植被(维管/非维管)相关的异质性将导致ET模型估计中的巨大不确定性。因此,本研究调查了这种异质性对模拟的ET估计北极沿海平原生态系统的重要性。通过结合基于田间的土壤湿度测量和BIOME BGC模型的修改版本,研究了这些影响的重要性。结果表明,在小范围内,土壤水分存在很大的变异性,这是由微观和宏观地形共同控制的。建模结果表明,BIOME BGC模型不能很好地估计ET。因此,该模型适用于北极沿海平原环境,包括:(1)蓄水和垂直排水/渗透程序,这些程序考虑了多年冻土和非血管植被(苔藓),(2) (3)包括两个步骤的背景蒸发程序,该程序模拟了苔藓和开阔水面的蒸发,包括静止的植被和地热通量。经过修改,产生了一个新模型Arctic BIOME BGC,与涡流塔测量相比,该模型显着减少了估计ET中的随机和系统误差。但是,在Arctic BIOME BGC中进行的修改增加了复杂性并增加了许多新参数。使用敏感性分析研究了这些新改编及其相关参数的相对重要性。敏感性分析的结果表明,该模型对大多数新参数高度敏感,这表明在北极BIOME BGC中添加的新过程表示形式对北极沿海平原生态系统的ET建模非常重要。

著录项

  • 作者

    Engstrom, Ryan Nicholas.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physical Geography.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号