首页> 外文学位 >Application of polyelectrolyte layer-by-layer nano-assembly for surface modification, encapsulation and controlled release.
【24h】

Application of polyelectrolyte layer-by-layer nano-assembly for surface modification, encapsulation and controlled release.

机译:聚电解质逐层纳米组件在表面修饰,包封和控制释放中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we applied the traditional Electrostatic layer-by-layer (ELBL) assembly procedure to fabricate nanothin films over flat surfaces, and modify particle surfaces to influence the drug particle size, and drug release. The ELBL assembly has previously been applied to fabricate multilayer nano-scale thin films, but its ability to instantaneously influencing particle size is unique. Other unique observations such as influence on drug release as a result of polymer complexation, and thermal changes occurring during layer fabrication are recorded.; The ELBL self-assembly process was applied to produce dexamethasone particles layered with various polyelectrolyte layer combinations. These combinations were further applied to modify insulin (PROMAXXRTM) particles. The protein based PROMAXXRTM particles were primarily modified to impart stealth and controlled release properties. The nanothin shells were characterized by quartz crystal microbalance measurements for layer assembly and thickness, microelectrophoresis for surface charge, microcalorimetry for thermal activity of assembly process, confocal microscopy, and scanning electron microscopy for visual conformation of layer assembly.; In-vitro release profiles of dexamethasone nanocapsules suspended in water or carboxymethylcellulose gels were measured using vertical Franz-type diffusion cells in conjunction with U--V Spectrophotometer.; Sonication of a suspension of dexamethasone microcrystals in a solution of PDDA not only reduced aggregation but also influenced particle size. Assembly of multiple polyelectrolyte layers around these monodispersed cores produced a polyelectrolyte multilayer shell around the drug microcrystals allowing controlled release depending on the composition and the number of layers. Thus, direct surface modification of dexamethasone microcrystals via the ELBL process produced submicron particles with diffusion controlled sustained drug release through the polyelectrolyte multilayer shell.; An interesting observation was made with the assembly of polyelectrolyte layers around the insulin particles (PROMAXXRTM). Through the process of complexation each alternate fabricated layer strengthened or weakened the layer interactions with the drug surface leading to slower or faster release rates.; Preliminary testing of a new approach for layer and particle assembly on flat solid substrates using an electrohydrodynamic atomizer was successfully demonstrated. Pre-labeled sub micron drug particles appeared to be assembled over the flat substrate modified by alternate layers of polyelectrolytes.
机译:在这项研究中,我们应用了传统的静电逐层(ELBL)组装程序来在平坦表面上制造纳米薄膜,并对颗粒表面进行改性以影响药物粒径和药物释放。 ELBL组件先前已应用于制造多层纳米级薄膜,但是其瞬时影响粒径的能力是独一无二的。记录其他独特的观察结果,例如由于聚合物络合对药物释放的影响以及在层制造过程中发生的热变化。运用ELBL自组装工艺生产地塞米松颗粒,其上铺有各种聚电解质层组合。这些组合可进一步应用于修饰胰岛素(PROMAXXRTM)颗粒。对基于蛋白质的PROMAXXRTM颗粒进行了初步修饰,以赋予隐形和控释特性。纳米薄壳的特征是通过石英晶体微量天平测量层组装和厚度,微电泳表面电荷,显微量热法测量组装过程的热活性,共聚焦显微镜和扫描电子显微镜观察层组装的视觉形态。悬浮在水或羧甲基纤维素凝胶中的地塞米松纳米胶囊的体外释放曲线是使用垂直Franz型扩散池结合紫外分光光度计测量的。地塞米松微晶在PDDA溶液中的悬浮液超声处理不仅减少了聚集,而且影响了粒径。围绕这些单分散核的多个聚电解质层的组装产生了围绕药物微晶的聚电解质多层壳,其允许根据组成和层数进行控制释放。因此,通过ELBL工艺对地塞米松微晶进行直接表面改性产生了亚微米颗粒,其具有通过聚电解质多层壳的扩散控制的持续药物释放。通过在胰岛素颗粒周围组装聚电解质层(PROMAXXRTM)进行了有趣的观察。通过复杂化的过程,每个交替制造的层都增强或减弱了该层与药物表​​面的相互作用,从而导致释放速率变慢或变快。成功演示了使用电动流体雾化器在扁平固体基板上进行层和粒子组装的新方法的初步测试。预标记的亚微米药物颗粒似乎在由交替交替的聚电解质层改性的平坦基材上组装。

著录项

  • 作者

    Pargaonkar, Nikhil Anil.;

  • 作者单位

    Louisiana Tech University.;

  • 授予单位 Louisiana Tech University.;
  • 学科 Engineering Biomedical.; Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;药剂学;
  • 关键词

  • 入库时间 2022-08-17 11:42:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号