首页> 外文学位 >Toward Accurate Small Animal Dosimetry and Irradiator Quality Assurance.
【24h】

Toward Accurate Small Animal Dosimetry and Irradiator Quality Assurance.

机译:寻求准确的小动物剂量和辐射器质量保证。

获取原文
获取原文并翻译 | 示例

摘要

Purpose: To demonstrate specific methods of small animal dosimetry and quality assurance through (1) machine-specific quality assurance and (2) target-specific quality assurance (QA) protocols for different types of biological irradiators: (a) a large-field orthovoltage irradiator, (b) a small-field orthovoltage irradiator, and (c) a 137Cs irradiator. Additionally, (3) a dosimetric characterization of a novel nano-scale phosphor detector for small animal dosimetry is performed.;Results: (1) Machine-specific QA: (a) Large-field irradiator: The output was shown to be linear. The kVp measurements were consistent for both data sets. The light and radiation field coincidence measurement yielded a shift in the left-right direction of 3 mm and the front-rear direction of 2 mm with respect to the radiation field. The in-air output measurements for the exposure settings of 320 kVp, 12.5 mA, and 165s for 4 filters were: 252.9 (no filter), 208.6 (F1), 76 (F2), and 176.3 (F4) cGy/min. (b) Small-field irradiator: A kVp check and HVL measurements were performed and dose or dose rate for the diagnostic protocols are as follows: 4.5 and 3.9 cGy/min AP and PA, respectively, for the 40 kVP protocol and 1.9 and 1.7 cGy/min AP and PA, respectively, for the 80 kVp protocol (fluoroscopy), 0.47 cGy (scout), and 8.6 +/- 0, 4.3 +/- 0.1, and 1.7 +/- 0.1 cGy/min for two 40 kVp protocols (first one has half the rotations per minute) and an 80 kVp protocol (CBCT). (2) Target-specific QA: (a) Large-field irradiator: The average DR for the head and body was calculated to be 228.6 +/- 3.1 cGy/min and 228.1 +/- 2.4 cGy/min, respectively, for a total average DR of 228.3 +/- 2.0 cGy/min. (b) Small-field irradiator: For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 x 10 mm, 20 x 20 mm, and 40 x 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. (c) 137Cs irradiator: Lab 1: The average dose rates for the head DRhead 1-5 were between 138.7 +/- 10.5 cGy/min for level 1 to 167.8 +/- 10.5 cGy/min for level 5. The average dose rates for the body DRbody 1-5 was 156.4 +/- 7.4 cGy/min for level 1 to 179.5 +/- 4.6 cGy/min for level 5. Lab 2: The average dose rate for the head DRhead was 133.8 +/- 0.5 cGy/min and the average dose rate for the body DRbody was 140.4 +/- 3.8 cGy/min for an averaged DRavg of 137.1 +/- 1.9 cGy/min. (3) The nano-scale phosphor detector behaved strictly linear for a dose range of 2 - 350 cGy with a variation in sensitivity of about 0.3%. The limit of detection was observed to be about 0.44 cGy in air. The in-air angular response was shown to have a coefficient of variation of 4.3%, while the in-phantom measurement without the table had a coefficient of variation of only 1.2%.;Conclusion: (1) Machine-specific QA: (a) Large-field irradiator: Machine-specific quality assurance checks dosimetric and mechanical parameters of the irradiator. (b) Small-field irradiator: Baseline quality assurance data was accumulated for all diagnostic mode protocols. The BSF was determined for therapy mode and shown to agree with published data. (2) Target-specific QA: (a) Large-field irradiator: The target-specific quality assurance performed using a mouse phantom yield a dose rate 14% higher than that estimated by the investigator. (b) Small-field irradiator: The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the former. The MOSFET method with the use of mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to +/- 2.7%. (c) 137Cs irradiator: Lab 1: Dose measurements from levels 3 and 4 were compared with the estimated dose rate. The average measured dose was found to be 19.8 +/- 2.6% and 13.8 +/- 2.0 % lower than the estimated dose. Lab 2: No comparison could be made due to user-error during irradiation. (3) The nano-scale phosphor detector displays equivalent or superior dosimeteric characteristics in comparison to commonly used TLD and MOSFET dosimeters for small animal dosimetry. (Abstract shortened by UMI.).
机译:目的:通过(1)针对不同类型的生物辐照器的(1)特定于机器的质量保证和(2)特定于目标的质量保证(QA)协议,展示小动物剂量学和质量保证的特定方法:(a)大视野正电压辐射器,(b)小视场正电压辐射器,以及(c)137Cs辐射器。此外,(3)进行了用于小型动物剂量测定的新型纳米级荧光粉检测器的剂量测定表征。结果:(1)机器特定的质量保证:(a)大视野照射器:输出显示为线性。两种数据集的kVp测量值均一致。光场和辐射场的重合度测量相对于辐射场在左右方向上偏移了3 mm,在前后方向上偏移了2 mm。对于4个滤镜的320 kVp,12.5 mA和165s的曝光设置,空气输出测量为:252.9(无滤镜),208.6(F1),76(F2)和176.3(F4)cGy / min。 (b)小视场辐照器:进行kVp检查和HVL测量,诊断方案的剂量或剂量率如下:40 kVP方案分别为4.5和3.9 cGy / min AP和PA和1.9和1.7对于80 kVp协议(荧光检查),cGy / min AP和PA分别为两个40 kVp,cGy / min为0.47 cGy(scout),以及8.6 +/- 0、4.3 +/- 0.1和1.7 +/- 0.1 cGy / min协议(第一个协议每分钟旋转一半)和80 kVp协议(CBCT)。 (2)特定于目标的质量保证:(a)大视野照射器:计算出的头和身体的平均DR分别为228.6 +/- 3.1 cGy / min和228.1 +/- 2.4 cGy / min。总平均DR为228.3 +/- 2.0 cGy / min。 (b)小视场辐照器:对于10 mm,15 mm和20 mm的圆形准直仪,通过体模测量的剂量分别比基于TG-61的测量值低4.3%,2.7%和6%。对于10 x 10 mm,20 x 20 mm和40 x 40 mm的准直仪,剂量差分别为4.7%,7.7%和2.9%。 (c)137Cs辐照器:实验1:头部DRhead 1-5的平均剂量率在1级的138.7 +/- 10.5 cGy / min至57.8的167.8 +/- 10.5 cGy / min的平均剂量身体DRbody 1-5的水平1为156.4 +/- 7.4 cGy / min,水平5为179.5 +/- 4.6 cGy / min。实验2:头部DRhead的平均剂量率为133.8 +/- 0.5 cGy / min,对于身体DRbody的平均剂量率是140.4 +/- 3.8cGy / min,对于平均DRavg为137.1 +/- 1.9cGy / min。 (3)纳米级荧光粉检测器在2-350 cGy的剂量范围内表现出严格的线性,灵敏度变化约0.3%。空气中的检测下限约为0.44 cGy。空中角度响应的变异系数为4.3%,而没有桌子的幻像测量的变异系数仅为1.2%.;结论:(1)机器特定的质量保证:(a )大视野辐照器:特定于机器的质量保证检查辐照器的剂量和机械参数。 (b)小视场辐射器:为所有诊断模式协议积累了基线质量保证数据。确定了BSF的治疗模式,并证明与公开数据一致。 (2)特定目标质量保证:(a)大视野照射器:使用小鼠体模执行的特定目标质量保证产生的剂量率比研究者估计的剂量率高14%。 (b)小视场辐照器:MOSFET数据系统地低于调试数据。剂量差异是由于固体水块中的散射辐射相对于小鼠体模的尺寸增加而导致的,这导致对前者中实际剂量的高估。使用鼠标幻像的MOSFET方法可提供较少的劳动密集型特定于几何的剂量学和准确性,且剂量公差最高可达+/- 2.7%。 (c)137Cs辐照器:实验1:将3级和4级的剂量测量值与估算的剂量率进行比较。发现平均测量剂量比估计剂量低19.8 +/- 2.6%和13.8 +/- 2.0%。实验2:由于在辐照过程中的用户错误,无法进行比较。 (3)与小动物剂量测定中常用的TLD和MOSFET剂量计相比,纳米级荧光粉检测器显示出等效或更好的剂量计特性。 (摘要由UMI缩短。)。

著录项

  • 作者

    Rodrigues, Anna Elisabeth.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Physics Radiation.;Nanotechnology.;Health Sciences Radiology.
  • 学位 M.S.
  • 年度 2012
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号