首页> 外文学位 >Algebraic Reynolds stress modeling of planar mixing layer flows.
【24h】

Algebraic Reynolds stress modeling of planar mixing layer flows.

机译:平面混合层流的代数雷诺应力建模。

获取原文
获取原文并翻译 | 示例

摘要

This work investigates the ability of algebraic Reynolds stress models to predict planar mixing layer flows, including effects caused by increasing compressibility such as the reduction in mixing layer growth rate and disproportionate reduction in individual turbulent stresses which causes an increase in turbulence anisotropy. To achieve these results a new algebraic Reynolds stress model is developed from first principles with careful consideration for incorporating additional correlation terms which arise in compressible flows. A new explicit solution procedure for the Reynolds stresses is also developed using an appropriate three-term tensor basis representation for compressible flows. This new solution procedure is moderately more complicated than existing explicit solution procedures for incompressible algebraic stress models since it requires the solution of a quartic, rather than cubic, equation for one of the tensor basis coefficients. Special consideration must also be given to the treatment of specific degenerate cases which are self-correcting in the incompressible formulation. For two-dimensional incompressible flow; the new solution procedure properly reduces to that used in existing explicit algebraic stress models.; The new algebraic stress model has been calibrated against detailed experimental data for a benchmark incompressible mixing layer. To aid in this calibration an automated numerical optimization procedure was developed. This calibration yielded a new set of coefficients for the pressure-strain correlation tensor that improves the predicted incompressible mixing layer growth rate and turbulent stresses.; Recent experimental data and direct numerical simulations of compressible mixing layers indicate that the observed changes in mixing layer growth rate and turbulence anisotropy are caused by reduced pressure fluctuations. This reduced communication results in changes to the turbulent length scale and pressure-strain correlation tensor. Compressibility corrections based upon these physical mechanisms as well as explicit dilatational corrections have been examined. None of these corrections adequately predicts all of the observed changes in compressible mixing layers. However, this work shows that by combining the turbulent length scale correction with a reformulated correction factor to the pressure-strain correlation tensor better agreement with the mixing layer growth rate is achieved and simultaneous changes in the Reynolds stresses are demonstrated.
机译:这项工作研究了代数雷诺应力模型预测平面混合层流动的能力,包括由增加的可压缩性引起的影响,例如混合层生长速率的降低和各个湍流应力的不成比例的降低,这会导致湍流各向异性的增加。为了获得这些结果,从第一原理开发了新的代数雷诺应力模型,并仔细考虑了合并可压缩流中出现的其他相关项。还针对可压缩流使用适当的三项张量基础表示法,开发了一种新的雷诺应力显式求解程序。这种新的求解过程比不可压缩的代数应力模型的现有显式求解过程要适度复杂,因为它需要对张量基系数之一进行四次方程式而不是三次方程式的求解。还必须特别考虑治疗不可变性制剂中可自行纠正的特定变性病例。对于二维不可压缩流;新的求解程序适当地减少到现有的显式代数应力模型中所使用的程序。已针对基准不可压缩混合层的详细实验数据对新的代数应力模型进行了校准。为了帮助进行校准,开发了一种自动数值优化程序。该校准产生了压力-应变相关张量的一组新系数,该系数提高了预测的不可压缩混合层的生长速率和湍流应力。最近的实验数据和可压缩混合层的直接数值模拟表明,观察到的混合层生长速率和湍流各向异性的变化是由减小的压力波动引起的。这种减少的连通导致湍流长度尺度和压力-应变相关张量的变化。已经检查了基于这些物理机制的可压缩性校正以及显式的膨胀校正。这些校正均不能充分预测可压缩混合层中所有观察到的变化。但是,这项工作表明,通过将湍流长度尺度校正和重新制定的校正因子与压力-应变相关张量结合起来,可以更好地与混合层的增长率相一致,并且证明了雷诺应力的同时变化。

著录项

  • 作者

    Yoder, Dennis Allen.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 334 p.
  • 总页数 334
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号