首页> 外文学位 >Effect of Rare-Earth Incorporation in Ferromagnetic Metals for Magnetic Domain Wall Devices.
【24h】

Effect of Rare-Earth Incorporation in Ferromagnetic Metals for Magnetic Domain Wall Devices.

机译:稀土掺入铁磁金属中对磁畴壁器件的影响。

获取原文
获取原文并翻译 | 示例

摘要

Devices that utilize propagation of magnetic domain walls are of interest for memory and logic applications. These devices are inherently non-volatile and have the potential for major reductions in energy consumption and required power dissipation. However, the speed of these devices must increase to compete with conventional electronics and the energy required to switch and propagate magnetic domains must be reduced to achieve low-power operation.;While Permalloy wires have been widely studied in recent years for domain wall based device applications, domain walls propagated by a spin-polarized current through Permalloy require high critical current densities to initiate domain wall motion and exhibit low velocities. Domain wall dynamics caused by an applied current are not yet fully understood and must be further explored and optimized to establish domain wall device concepts as viable technologies. Magnetization dynamics depend strongly on material properties yet utilization of materials engineering to provide insight and enhancements in dynamics is an area that has not been adequately explored.;In this work, we study novel magnetic metal alloys created by doping ferromagnetic materials with rare-earth elements and evaluate their potential to enhance domain wall dynamics thereby improving domain wall device performance. We focus on Gd dopants that reduce magnetization of magnetic transition metals by antiferromagnetic coupling while still maintaining a low Gilbert damping factor. Dopant atoms should also act as scattering centers that reduce the spin-flip length thus enhancing the non-adiabatic spin torque factor. The static magnetic properties and crystallinity of various film compositions incorporating Gd dopants in Permalloy, Ni and Co are characterized by SQUID magnetometry and XRD measurements. The measurements confirm that Gd dopants decrease the film magnetization and destroy the film crystallinity creating amorphous films with low coercive fields.;Measurements analyzing the effect of Gd dopants on magnetization dynamics are limited to doped Permalloy films because Permalloy has the lowest Gilbert damping factor and has been extensively characterized. FMR measurements demonstrate a small effect on the Gilbert damping factor and verify that co-sputtering yields high-quality uniform thin films. The spin transfer velocity and current polarization are measured using a spin wave Doppler technique. Through measurements, it was found for the first time, that introducing Gd dopants results in a considerable reduction in current polarization which reduces the spin transfer velocity.;These results are verified with the first domain wall velocity measurements through PyGd wires performed using time-resolved MOKE magnetometry. The spin transfer velocity for Permalloy reduces by 30% for the Py0.921Gd 0.079 composition. The effect of the non-adiabatic spin torque contribution is determined through current-assisted domain wall depinning measurements. An unexpected negative spin torque effect is measured for two of the PyGd compositions implying a negative non-adiabatic factor.;In summary, this work explores new magnetic materials and provides insight into current-induced domain wall dynamics that can be used to enhance the domain wall velocity for device applications. These findings indicate that rare-earth dopants are useful for devices utilizing magnetic field propagation resulting in similar velocities as Permalloy but at lower magnetic fields. However, for devices that propagate domain walls using spin-polarized current, the rare-earth doping technique is not beneficial due to the unexpected degradation in spin torque efficiency. This work is the first of its kind to reveal this mechanism and provides insight into the impact of rare-earth incorporation on domain wall dynamics. Although these devices may not provide the expected increase in velocity, the use of rare-earth dopants in magnetic materials provides a platform to study domain wall dynamics by allowing the tuning of material parameters and correlating the impact on domain wall velocities.
机译:利用磁畴壁的传播的设备对于存储器和逻辑应用是令人感兴趣的。这些设备本质上是非易失性的,有可能大大降低能耗和所需的功耗。但是,这些设备的速度必须提高才能与常规电子设备竞争,并且必须降低转换和传播磁畴所需的能量,以实现低功耗运行。虽然近年来坡莫合金线已被广泛研究用于基于畴壁的设备在应用中,自旋极化电流通过坡莫合金传播的畴壁需要很高的临界电流密度,以启动畴壁运动并表现出低速度。由外加电流引起的畴壁动力学尚未完全理解,必须进一步探索和优化以将畴壁设备概念确立为可行的技术。磁化动力学在很大程度上取决于材料的性能,但是材料工程的利用来提供动力学的见解和增强是一个尚未充分探索的领域。在这项工作中,我们研究了用稀土元素掺杂铁磁材料制成的新型磁性金属合金并评估其增强畴壁动力学从而改善畴壁设备性能的潜力。我们专注于通过反铁磁耦合降低磁性过渡金属磁化强度同时仍保持较低的吉尔伯特阻尼系数的Gd掺杂剂。掺杂原子还应充当散射中心,以减少自旋翻转长度,从而增强非绝热自旋扭矩因子。通过SQUID磁力测定法和XRD测量来表征在坡莫合金,Ni和Co中掺有Gd掺杂剂的各种膜组合物的静磁性能和结晶度。这些测量结果证实了Gd掺杂剂会降低薄膜的磁化强度并破坏薄膜的结晶度,从而形成具有低矫顽场的非晶薄膜。被广泛表征。 FMR测量显示出对吉尔伯特阻尼因子的影响很小,并验证了共溅射可产生高质量的均匀薄膜。使用自旋波多普勒技术测量自旋传递速度和电流极化。通过测量,首次发现引入Gd掺杂剂可显着降低电流极化,从而降低自旋转移速度;这些结果已通过使用时间分辨的PyGd线进行的第一畴壁速度测量得到了验证MOKE磁力计。对于Py0.921Gd 0.079组合物,坡莫合金的自旋转移速度降低了30%。非绝热自旋转矩贡献的影响是通过电流辅助畴壁去钉测量确定的。测量了两种PyGd成分的意想不到的负自旋扭矩效应,这表明存在负非绝热因子。总之,这项工作探索了新的磁性材料,并深入了解了电流感应的畴壁动力学,可用于增强畴设备应用的壁速度。这些发现表明,稀土掺杂剂可用于利用磁场传播的设备,该设备产生与坡莫合金相似的速度,但磁场较低。但是,对于使用自旋极化电流传播畴壁的设备,稀土掺杂技术由于自旋转矩效率的意外降低而无益。这项工作是首次揭示这种机制,并提供了稀土掺入对畴壁动力学影响的见解。尽管这些设备可能无法提供预期的速度提高,但在磁性材料中使用稀土掺杂剂可以通过调节材料参数并关联对畴壁速度的影响,提供研究畴壁动力学的平台。

著录项

  • 作者

    Thomas, Rebecca Lynn.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Physics Solid State.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号