首页> 外文学位 >Multiphoton fluorescence recovery after photobleaching: Advancements for novel in vivo applications.
【24h】

Multiphoton fluorescence recovery after photobleaching: Advancements for novel in vivo applications.

机译:光漂白后的多光子荧光恢复:新型体内应用的进展。

获取原文
获取原文并翻译 | 示例

摘要

Multiphoton fluorescence recovery after photobleaching (MP-FRAP) is a laser microscopy technique used to probe the transport properties of macromolecules in biological systems. MP-FRAP utilizes two-photon fluorescence and photobleaching to produce a three-dimensionally resolved diffusion coefficient for an ensemble of molecules in the region of the two-photon focal volume. This thesis describes two fundamental improvements to the MP-FRAP technique, which are vital steps to enable MP-FRAP to be applied to the complex in vivo environment.;In Chapter 1, we lay the groundwork for our discussion of these advancements by introducing the MP-FRAP technique and the physics upon which it is based. We begin with a description of fluorescence and diffusion and discuss their importance in biomedical research. Next, we describe how two-photon fluorescence and photobleaching are applied to a diffusing system to measure the diffusion coefficient via fluorescence recovery after photobleaching (FRAP). Then, we take the reader through the evolution of FRAP, which leads to the application of two- photon fluorescence and photobleaching to produce MP-FRAP. Along the way, we highlight applications and advancements of the FRAP techniques, and introduce fluorescence correlation spectroscopy, a popular complement to FRAP.;In Chapter 2, we collect the experimental methods for the studies presented in Chapters 3 and 4. We begin with an in-depth discussion of our work to build and troubleshoot our MP-FRAP apparatus, followed by a detailed description of our data analysis protocol. Next, we delve into the specific methods for producing computer generated data and fits, as well as in vitro and in vivo experimental data, for our work in Chap. 3 on improving MP-FRAP to measure diffusion in the presence of convective flow. We end with a description of the Monte Carlo algorithm we developed for our work in Chap. 4 to model diffusion and multiphoton fluorescence recovery after photobleaching in the presence of reflective boundaries of various geometries.;In Chapter 3, we develop an improved analytical model of multiphoton fluorescence recovery after photobleaching that includes the effects of convective flows within a system. We use computer generated data and fits to explore the effect of convective flow on the shape and speed of fluorescence recovery, and to estimate the range of diffusion coefficients and flow speeds over which this new "diffusion-convection" model yields accurate diffusion coefficients (as compared to the diffusion-only model). We then demonstrate the validity of the diffusion-convection model through in vitro experimentation in systems with known diffusion coefficients and known flow speeds, and show that the diffusion-convection model enables accurate determination of the diffusion coefficient via MP-FRAP, even when significant flows are present. We conclude by demonstrating the effectiveness of the diffusion-convection model in vivo by measuring the diffusion coefficient and flow speed within tumor vessels of 4T1 murine mammary adenocarcinomas implanted in the dorsal skinfold chamber.;In Chapter 4, we present our work that allows MP-FRAP to be performed accurately near reflective boundaries of various geometries. Using Monte Carlo techniques, we first generate an initial distribution of bleached molecules, then simulate their diffusion away from the initial distribution, thereby producing fluorescence vs. time recovery curves in the region of the initial bleached distribution. These curves are then fit to the standard analytical MP-FRAP model to produce a diffusion coefficient. By introducing solid barriers into the model in the region of the initial bleached distribution, we learn how the presence of harriers of different geometries affects the measurement of diffusion via MP-FRAP. Finally, we supply ranges of barrier positions for each geometry within which MP-FR AP can confidently be employed to measure accurate diffusion coefficients.
机译:光漂白后的多光子荧光恢复(MP-FRAP)是一种激光显微镜技术,用于探测生物分子在生物系统中的传输特性。 MP-FRAP利用双光子荧光和光漂白来产生二维解析的扩散系数,用于在双光子焦点区域内的分子整体。本论文描述了MP-FRAP技术的两个基本改进,这是使MP-FRAP能够应用于复杂的体内环境的重要步骤。在第一章中,我们通过介绍这些技术为这些进展奠定了基础。 MP-FRAP技术及其基础物理学。我们从荧光和扩散的描述开始,并讨论它们在生物医学研究中的重要性。接下来,我们描述如何将双光子荧光和光漂白应用于扩散系统,以通过光漂白后的荧光恢复(FRAP)测量扩散系数。然后,我们引导读者了解FRAP的演变,这导致了应用双光子荧光和光漂白来生产MP-FRAP。在此过程中,我们重点介绍了FRAP技术的应用和发展,并介绍了荧光相关光谱法,这是FRAP的流行补充。在第二章中,我们收集了在第三章和第四章中介绍的研究方法。对我们构建MP-FRAP设备并对其进行故障排除的工作的深入讨论,然后详细介绍了我们的数据分析协议。接下来,我们研究在Chap中用于生成计算机生成的数据和拟合以及体外和体内实验数据的特定方法。关于改进MP-FRAP以测量对流流动下扩散的3。最后,我们描述了为在Chap中工作而开发的蒙特卡洛算法。 4可以在存在各种几何形状的反射边界的情况下对光漂白后的扩散和多光子荧光恢复进行建模。在第3章中,我们开发了一种改进的光漂白后多光子荧光恢复的分析模型,其中包括系统内对流的影响。我们使用计算机生成的数据进行拟合,以探索对流对荧光恢复的形状和速度的影响,并估计扩散系数和流速的范围,在该范围内,新的“扩散-对流”模型可产生准确的扩散系数(如与仅扩散模型相比)。然后,我们通过在具有已知扩散系数和已知流速的系统中进行体外实验,证明了扩散对流模型的有效性,并表明即使在有大量流量的情况下,扩散对流模型也能够通过MP-FRAP准确确定扩散系数。存在。我们通过测量植入背皮腔的4T1鼠乳腺腺癌在肿瘤血管中的扩散系数和流速来证明扩散对流模型在体内的有效性。在第4章中,我们介绍了允许MP-在各种几何形状的反射边界附近准确执行FRAP。使用蒙特卡洛技术,我们首先生成漂白分子的初始分布,然后模拟其远离初始分布的扩散,从而在初始漂白分布的区域中生成荧光与时间恢复曲线。然后将这些曲线拟合到标准分析MP-FRAP模型以产生扩散系数。通过在初始漂白分布区域中将固体屏障引入模型,我们了解了不同几何形状的的存在如何影响通过MP-FRAP进行的扩散测量。最后,我们提供了每种几何图形的势垒位置范围,在该范围内可以可靠地使用MP-FR AP来测量准确的扩散系数。

著录项

  • 作者

    Sullivan, Kelley Diane.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biophysics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号