首页> 外文学位 >Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes.
【24h】

Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes.

机译:使用纳米装饰阳极的细菌群落分析,新的外加电隔离和增强的微生物电化学系统性能。

获取原文
获取原文并翻译 | 示例

摘要

Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode.;The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species.;Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors. Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment.;Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads.;The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to contribute current increase in CNT decorated anode MECs. The up regulated genes encoded to flavin also contribute to current enhancement in CNT decorated anode MECs.
机译:由于微生物电化学系统(MESs)在可再生能源发电,生物修复和废水处理中的应用前景广阔,因此近年来引起了很多研究关注。在MES中,微生物通过电子与电极相互作用,催化阳极和阴极处的氧化和还原反应。;通过变性梯度分析了高功率混合财团MES(最大功率密度为6.5W / m2)的细菌群落。凝胶电泳(DGGE)和16S DNA克隆文库方法。细菌DGGE谱图相对复杂(超过10个条带),但DGGE结果中只有三个明亮的显性条带。这些结果表明在混合财团MFC中存在三种优势细菌种类。 16S DNA克隆文库方法结果表明,混合培养中主要的细菌种类是Geobacter sp(66%),Arcobacter sp和Citrobacter sp。这三种细菌占细菌总数的88%。该结果与DGGE结果一致,DGGE结果表明三个亮带代表了三种主要细菌种。;在常规厌氧条件下,以柠檬酸铁为电子受体,通过常规电镀技术从无介体的微生物燃料电池中分离出外生电细菌菌株SX-1。 。对16S rDNA序列的系统发育分析表明,它与柠檬杆菌属的柠檬杆菌属有关。 sdy-48是最密切相关的物种。细菌菌株SX-1在MFC中由柠檬酸盐,乙酸盐,葡萄糖,蔗糖,甘油和乳糖产生电,柠檬酸盐产生的最高电流密度为205 mA / m2。循环伏安法分析表明,膜相关蛋白可能在促进电子从细菌转移到电极方面起重要作用。这是第一项证明柠檬酸杆菌可以将电子转移到细胞外电子受体的研究。柠檬酸杆菌菌株SX-1能够从MFC中的多种底物中产生电能。这一发现增加了已知的发电外生电子的多样性,并提供了一种新的菌株来探索细胞外电子从细菌转移到电极的机理。 SX-1可广泛利用底物,从而增加了MFC在可再生能源生产和废物处理中的应用潜力。阳极性能对于微生物电解池(MEC)的性能至关重要。以廉价的Fe纳米粒子修饰的石墨圆盘为阳极,初步研究了纳米粒子对Shewanella oneidensis MR-1在MEC中的性能的影响。结果表明,用铁纳米颗粒装饰的阳极产生的平均电流密度比普通石墨阳极高5.9倍。基因表达的全基因组微阵列分析显示,编码生物膜形成的基因作为对纳米颗粒修饰阳极的响应而显着上调。与纳米线,黄素和c型细胞色素有关的基因表达增加表明,电子向阳极转移的机制增强也可能有助于观察到的电流密度增加。其余大多数差异表达基因与电子运输和厌氧代谢有关,表明对增加的功率负荷有系统反应。碳纳米管(CNT)是另一种形式的纳米材料。碳纳米管(CNT)修饰的石墨圆盘用作阳极,以研究纳米结构对微生物电解池(MEC)中沙门氏菌性能的影响。用CNT装饰的阳极产生的电流密度比普通石墨阳极高5.6倍。全局转录组分析表明,与细胞外电子转移相关的细胞色素c基因在CNT修饰的阳极中表达较高,这是导致CNT修饰的阳极MEC电流增加的主要因素。编码为黄素的上调基因也有助于增强CNT装饰的阳极MEC中的电流。

著录项

  • 作者

    Xu, Shoutao.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Biology Microbiology.;Chemistry Biochemistry.;Nanotechnology.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号