首页> 外文学位 >Mussel-inspired Biomaterials for the Enhancement of the Mechanical Properties of Soft Tissue Replacements.
【24h】

Mussel-inspired Biomaterials for the Enhancement of the Mechanical Properties of Soft Tissue Replacements.

机译:贻贝启发的生物材料,用于增强软组织替代物的机械性能。

获取原文
获取原文并翻译 | 示例

摘要

The marine mussel is often found anchoring itself to rocks in the intertidal zone. This environment is rich in nutrients and oxygen, but is mechanically very brutal. The mussel adheres to surfaces via a set of byssal threads that terminate in adhesive plaques. Both the adhesive plaques and threads possess outstanding mechanical properties, with the byssal thread said to possess self-healing properties. It is believed that metal-histidine coordination bonds within the thread serve as sacrificial bonds, breaking when a load is applied and reforming after removal of a load. The main focus of this thesis is to understand the impact that similar sorts of bonds can have on the bulk mechanical properties of hydrogels. It was hypothesized that reversible coordination bonds can toughen hydrogels, which are generally weak and brittle materials. The poor mechanical properties of most hydrogels have limited their use as structural biomaterials. While many hydrophobic engineering polymers possess mechanical properties suitable for structural biomaterials, these materials often lack good biocompatibility, inducing inflammation, coagulation or other negative outcomes. Hydrogels are mainly composed of water and are generally well tolerated by the body. Histidine, catechol and nitrocatechol coordination cross-linked hydrogels are studied in this thesis. A variety of techniques are employed in order to correlate the bulk mechanical response to the underlying molecular mechanics. Using histidine modified hydrogels we find a significant correlation between histidine-metal bond relaxation time and hydrogel relaxation time. We demonstrate that Fe3+ can induce covalent carbon-carbon cross-linking of catechols at acidic pH and be coordinated by catechols at basic pH. We use this discovery to produce dual coordination-covalent hydrogels that exhibit relaxation properties qualitatively similar to shock absorbing tissues. Inspired by the mussel, coordination bonds are shown to exhibit load-dissipating qualities that have the potential to enhance the robustness of soft biomaterials.
机译:人们经常发现海洋贻贝将自己锚定在潮间带的岩石上。这种环境富含营养和氧气,但是机械上非常残酷。贻贝通过一组附在斑块中的底线粘附在表面上。粘合板和线都具有出色的机械性能,而底线据说具有自愈性能。据信,线内的金属-组氨酸配位键用作牺牲键,在施加载荷时断裂,并且在除去载荷后重新形成。本文的主要重点是了解类似键对水凝胶整体力学性能的影响。假设可逆配位键可以使水凝胶增韧,而水凝胶通常是弱而脆的材料。大多数水凝胶的较差的机械性能限制了它们作为结构生物材料的用途。尽管许多疏水性工程聚合物具有适用于结构生物材料的机械性能,但这些材料通常缺乏良好的生物相容性,从而引起炎症,凝结或其他不良后果。水凝胶主要由水组成,通常被人体很好地耐受。本文研究了组氨酸,邻苯二酚和硝基邻苯二酚配位交联水凝胶。为了使整体机械响应与基础分子力学相关联,采用了多种技术。使用组氨酸修饰的水凝胶,我们发现组氨酸-金属键弛豫时间与水凝胶弛豫时间之间存在显着相关性。我们证明,Fe3 +可以在酸性pH下诱导邻苯二酚的共价碳-碳交联,并在碱性pH下被邻苯二酚所协调。我们利用这一发现来生产双配位共价水凝胶,该水凝胶在质量上表现出与减震组织相似的松弛特性。受到贻贝的启发,配位键表现出分散载荷的特性,具有增强软生物材料坚固性的潜力。

著录项

  • 作者

    Fullenkamp, Dominic Edward.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号