首页> 外文学位 >Computational Methods for Knowledge Integration in the Analysis of Large-scale Biological Networks.
【24h】

Computational Methods for Knowledge Integration in the Analysis of Large-scale Biological Networks.

机译:大型生物网络分析中知识整合的计算方法。

获取原文
获取原文并翻译 | 示例

摘要

As we migrate into an era of personalized medicine, understanding how bio-molecules interact with one another to form cellular systems is one of the key focus areas of systems biology. Several challenges such as the dynamic nature of cellular systems, uncertainty due to environmental influences, and the heterogeneity between individual patients render this a difficult task. In the last decade, several algorithms have been proposed to elucidate cellular systems from data, resulting in numerous data-driven hypotheses. However, due to the large number of variables involved in the process, many of which are unknown or not measurable, such computational approaches often lead to a high proportion of false positives. This renders interpretation of the data-driven hypotheses extremely difficult. Consequently, a dismal proportion of these hypotheses are subject to further experimental validation, eventually limiting their potential to augment existing biological knowledge.;This dissertation develops a framework of computational methods for the analysis of such data-driven hypotheses leveraging existing biological knowledge. Specifically, I show how biological knowledge can be mapped onto these hypotheses and subsequently augmented through novel hypotheses. Biological hypotheses are learnt in three levels of abstraction—individual interactions, functional modules and relationships between pathways, corresponding to three complementary aspects of biological systems. The computational methods developed in this dissertation are applied to high throughput cancer data, resulting in novel hypotheses with potentially significant biological impact.
机译:随着我们进入个性化医学的时代,了解生物分子如何相互作用以形成细胞系统是系统生物学的重点领域之一。诸如细胞系统的动态特性,由于环境影响引起的不确定性以及各个患者之间的异质性等诸多挑战使这项任务变得艰巨。在过去的十年中,已经提出了几种算法来从数据中阐明蜂窝系统,从而产生了许多数据驱动的假设。但是,由于该过程涉及大量变量,其中许多是未知变量或无法测量的,因此此类计算方法通常会导致很大比例的误报。这使得对数据驱动的假设的解释极为困难。因此,这些假说的一小部分需要进一步的实验验证,最终限制了它们增加现有生物学知识的潜力。本论文开发了一种计算方法框架,用于利用现有生物学知识分析此类数据驱动的假说。具体而言,我展示了如何将生物学知识映射到这些假设上,并随后通过新的假设进行扩充。生物学假设是从三个抽象层次中学习的—个体相互作用,功能模块和途径之间的关系,对应于生物学系统的三个互补方面。本文开发的计算方法被应用于高通量癌症数据,从而产生具有潜在重大生物学影响的新假设。

著录项

  • 作者

    Ramesh, Archana.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biology Bioinformatics.;Computer Science.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号