首页> 外文学位 >Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors.
【24h】

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors.

机译:实现被动安全的复杂系统设计:液态盐卵石床反应器的自然循环冷却。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level.;In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR.;A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core.;An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed.;Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.
机译:本文讨论了系统设计,瞬态系统响应建模以及单个现象的表征,并展示了在复杂工程系统的设计过程中将这三个活动整合在一起的框架。提出了对实验,建模和详细设计开发进行优先级排序的系统分析框架。讨论了热工液压中的两个基本主题,它们说明了建模和实验与核反应堆设计和安全性分析的集成:生热卵石床芯的热工液压模型,以及使用Boussinesq液体进行自然循环除热的规模试验。本文使用的案例研究来自卵石床氟化物盐冷却的高温核反应堆(PB-FHR)的设计和安全分析,该反应堆目前在美国的大学和国家实验室级别上正在开发中。本文提出并演示了现象识别和排序表(PIRT)方法论的背景,新工具和方法,这些工具和方法与开发的早期阶段的技术以及被动安全功能的分析特别相关。提出了一种系统分解方法。系统功能需求的定义补充了系统行为的当前知识库的识别和编译。开发了两种新的图形工具来对现象重要性进行排名:现象排名图和现象识别与排名矩阵(PIRM)。通过这种方法确定的功能要求用于反应堆堆芯的设计和优化,以及用于PB-FHR的被动自然循环驱动的衰变除热系统的瞬态分析和设计。提出了产生多孔介质的多维流体流。该建模方法在氟化盐混合物冷却的PB-FHR环形卵石床芯中的应用生成了一个名为 Pod。 Pod。的模型。由于浮力对填充床中的流量和温度分布的影响,PB-FHR芯的温度升高会产生热点或冷点。 Pod。用于研究PB-FHR对ATWS瞬变的响应。根据岩心的功能要求,使用 Pod。生成岩心中流量分布的优化设计。;这里对由单相Boussinesq流体冷却的自然循环回路进行了分析。 ,在依靠自然循环衰变热量去除的反应堆设计和规模化实验设计的背景下。对于瞬态自然循环回路,具有较长流体滞留时间且流体惯性对动量方程的贡献可忽略不计的回路,将建立换算参数。讨论了PB-FHR强制循环损失(LOFC)的积分效应测试的设计。分析了从卵石床反应器中自然循环衰变除热的特殊情况。确定了在多维卵石床中定义雷诺数的方法。开发了使用电阻加热的环形管和针形阀复制卵石床摩擦损失的定标方法。液态氟化物盐的热物理性质导致系统的设计具有低流速,因此流体停留时间长。进行了液体冷却剂对卵石床稳态自然循环除热性能的比较。;这里给出了含氟盐模拟流体的瞬态自然循环实验数据。氟化物盐的低流速和相对较高的粘度导致较低的雷诺数流动,而较低的雷诺数和足够高的热膨胀系数使系统容易受到局部浮力的影响实验表明,滞留物的缓慢交换静态腿中的液体可在自然循环回路的瞬态响应中发挥重要作用。在对自然循环回路的性能进行建模时,应考虑非线性温度曲线对流动支路的热或冷支路或其他部分的影响,这些影响可能在瞬态情况下产生。此处提供的数据可用于验证热工液压系统代码在通过液态氟化物盐及其模拟流体通过自然循环进行排热建模中的应用。

著录项

  • 作者

    Scarlat, Raluca Olga.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Chemical.;Engineering Nuclear.;Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号