首页> 外文学位 >Tuning the magnetization dynamics of nanomagnetic elements through irradiation, composition, and shape.
【24h】

Tuning the magnetization dynamics of nanomagnetic elements through irradiation, composition, and shape.

机译:通过辐照,组成和形状调整纳米磁性元素的磁化动力学。

获取原文
获取原文并翻译 | 示例

摘要

The areal density of current magnetic storage technologies is approaching the superparamagnetic limit. In order to reach densities of 1 Tb/in2 and beyond, new recording techniques are needed, such as the use of patterned media or energy-assisted recording. Studying the small angle ultrafast dynamics sheds light on the intrinsic magnetic properties that determine the device speed. In this Thesis, I will discuss several material systems related to the next generation technologies, and how their dynamics can be tuned through ion irradiation, changes in composition, and three-dimensional shaping. The ability to not only characterize a material's dynamics, but to tune its resonance frequencies, adds an extra dimension of design optimization and flexibility.;First, we measured how the magnetization dynamics of CoCrPt:SiO 2 granular media is affected by irradiation with Co+ ions. We observe a steep decrease in the resonance frequency as the ion fluence is increased. Moreover, we quantified how the intergranular exchange can affect the dynamics, causing an increase in frequency beyond what is predicted through macrospin calculations.;Next, we used the composition of the FePt alloy to tune the dynamic response. We showed that the magnetic oscillation frequency of disordered FexPt 100-x alloys can be tuned by up to 50 % by varying the iron content from 42 at. % to 100 at. %. The increasing amount of Pt causes a decrease in the saturation magnetization, and this causes a change in resonance frequency. Furthermore, the damping is enhanced as the Pt is increased due to the additional mosaicity and spin scattering in the alloy.;The main focus of this work was the first investigation of the switching behavior and magnetization dynamics of curved nanomagnets ("caps") and their comparison to flat dots of the same diameter and thickness. We find that the spherical caps reverse via coherent rotation at a larger diameter than the flat dots, and that the caps become saturated at lower applied field strengths. The spin wave spectra of the spheres also proved to be dramatically different than the flat dots, exhibiting a complex mode spectrum with atypical field dependence. The additional modes were due to the interplay of the field direction and curvature of the sphere, which caused multiple distinct regions of demagnetizing field value that were able to support localized spin waves.
机译:当前的磁存储技术的面密度正在接近超顺磁极限。为了达到1 Tb / in 2 或更高的密度,需要新的记录技术,例如使用图案化媒体或能量辅助记录。对小角度超快动力学的研究揭示了决定器件速度的固有磁性能。在本文中,我将讨论与下一代技术相关的几种材料系统,以及如何通过离子辐照,成分变化和三维成形来调整其动力学。不仅可以表征材料的动力学特性,还可以调节其共振频率,从而增加了设计优化和灵活性的额外维度。首先,我们测量了CoCrPt:SiO 2 颗粒介质的磁化动力学受Co + 离子照射的影响。我们观察到共振频率随着离子通量的增加而急剧下降。此外,我们量化了晶间交换如何影响动力学,从而导致频率增加,超出了通过大旋量计算所预测的范围。接下来,我们使用FePt合金的成分来调节动力学响应。我们表明,通过从42 at改变铁含量,无序的Fe x Pt 100-x 合金的磁振荡频率最多可以调节50%。 %至100 at。 %。 Pt的增加导致饱和磁化强度的降低,这引起谐振频率的变化。此外,由于合金中额外的镶嵌性和自旋散射,随着Pt的增加,阻尼得到增强。该工作的主要重点是对弯曲纳米磁铁(“帽”)的开关行为和磁化动力学的首次研究。它们与相同直径和厚度的平点的比较。我们发现,球形帽通过相干旋转以比扁平点大的直径反向旋转,并且帽在较低的施加场强下变得饱和。球的自旋波谱也被证明与平坦点显着不同,表现出具有非典型场依赖性的复杂模式谱。附加模式是由于磁场方向和球面曲率的相互作用而引起的,这导致了多个不同的磁场场值的消磁区域能够支持局部自旋波。

著录项

  • 作者

    Brandt, Rebekah.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号