首页> 外文学位 >Overcoming Complexity in Systems Biology Modeling and Simulation.
【24h】

Overcoming Complexity in Systems Biology Modeling and Simulation.

机译:克服系统生物学建模和仿真中的复杂性。

获取原文
获取原文并翻译 | 示例

摘要

Advances in high-precision and high-throughput biochemical measurement have generated overwhelming amounts of molecular and cellular data. To make sense of this biological information, computational approaches for building and exploring models of cellular function are needed. Here I present methods and software that confront three of the most pressing computational challenges facing biological modeling: 1) managing the enormous numbers of possible molecular interactions, 2) coarse-graining complex reaction mechanisms in a flexible and efficient manner, and 3) merging multiple biological representations and simulation methods to construct multiscale models. The result is two new computational modeling platforms: NFsim and the Hive. NFsim is a biochemical reaction simulator which uses a rule- and agent-based approach to simulate the dynamics of large biochemical reaction networks. NFsim also addresses difficulties in coarse-graining by providing the capability to incorporate steady-state approximations, molecular cooperativity, and logical constraints in kinetic models. The Hive is a scalable software framework designed for constructing multiscale biological models. Its key feature is a general interface for merging multiple biological representations and simulation methods, for instance, to couple a stochastic intracellular signaling model with partial differential equations describing extracellular diffusion. I demonstrate the advantages of NFsim and the Hive across a wide range of biological systems, including signaling in the immune system, polymerization of actin filaments, genetic regulatory networks, and microbial signaling pathways. The culmination of this thesis is an extended analysis of the effects of multiple flagellar motors and molecular noise on bacterial chemotaxis. By using experimentally calibrated models of chemotactic bacteria developed with NFsim and the Hive, I illustrate how signaling noise in the pathway is predicted to coordinate the switching statistics of multiple flagellar motors and improve chemotactic response to shallow gradients of attractants. This counter-intuitive, noise-enhanced response is possible because noise not only affects signal processing, but also modifies the motion of a bacterium and the statistics of gradient sampling. These results have important general implications for how noise influences other signal transduction and gradient detection systems.
机译:高精度和高通量生物化学测量技术的发展已产生了大量的分子和细胞数据。为了理解这种生物学信息,需要用于建立和探索细胞功能模型的计算方法。在这里,我将介绍生物建模面临的三个最紧迫的计算挑战的方法和软件:1)管理大量可能的分子相互作用,2)以灵活有效的方式粗化复杂的反应机制,以及3)合并多个生物学表示和模拟方法来构建多尺度模型。结果就是两个新的计算建模平台:NFsim和Hive。 NFsim是一个生化反应模拟器,它使用基于规则和代理的方法来模拟大型生化反应网络的动力学。 NFsim还提供了将稳态近似,分子协同性和逻辑约束纳入动力学模型的功能,从而解决了粗粒度方面的难题。 Hive是旨在构建多尺度生物学模型的可扩展软件框架。它的关键特征是用于合并多种生物学表示和仿真方法的通用接口,例如,将随机细胞内信号传导模型与描述细胞外扩散的偏微分方程耦合在一起。我展示了NFsim和Hive在广泛的生物系统中的优势,包括免疫系统中的信号传导,肌动蛋白丝聚合,遗传调控网络和微生物信号传导途径。本文的高潮是对多种鞭毛运动和分子噪声对细菌趋化性的影响的扩展分析。通过使用由NFsim和Hive开发的化学趋化细菌的实验校准模型,我说明了如何预测该途径中的信号噪声如何协调多个鞭毛马达的开关统计并改善对引诱剂浅梯度的趋化反应。这种反直觉的,噪声增强的响应是可能的,因为噪声不仅会影响信号处理,还会修改细菌的运动和梯度采样的统计信息。这些结果对于噪声如何影响其他信号转导和梯度检测系统具有重要的一般意义。

著录项

  • 作者

    Sneddon, Michael William.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology Cell.;Biophysics General.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号