首页> 外文学位 >Molecular mechanisms of microbial iron respiration by Shewanella oneidensis MR-1.
【24h】

Molecular mechanisms of microbial iron respiration by Shewanella oneidensis MR-1.

机译:沙希氏菌MR-1对微生物铁呼吸的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

Microbial metal respiration is central to a variety of biogeochemically important processes including the weathering of clays, biotransformation of Fe- and Mn-bearing minerals, and reductive precipitation of radionuclides (e.g. U(VI) and Tc(VII)); the latter forming the basis for an alternative remediation strategy for radioactive-contaminated field sites. Compared to the wealth of knowledge of other respiratory processes including aerobic respiration and anaerobic respiration using NO3-, SO 42-, fumarate, and other compounds as electron acceptor, the components of the respiratory chain terminating with transition metals have yet to be conclusively identified. Shewanella spp. are present in a variety of freshwater and marine environments and can respire a variety of compounds which span the redox continuum. These include O2, solid and soluble Fe(III), Mn(III), Mn(IV), NO3 -, NO2-, S2O 32-, S0, DMSO, TMAO, fumarate, U(VI) and Tc(VII). Because of this extreme respiratory versatility, Shewanella spp. may predominate in redox-stratified subsurface environments where terminal electron acceptors vary on small temporal and spatial scales.;In the present study, a novel gene deletion system was constructed and used to examine the function of PsrA, the putative thiosulfate reductase in S. oneidensis MR-1. PsrA-null mutants (PSRA1) was unable to grow with S2O32- or S0 as terminal electron acceptor while retaining respiratory ability on all other electron acceptors tested. Additionally, PSRA1 retained mRNA transcripts for downstream genes psrB and psrC, indicating that the psrA mutation was in-frame and did not cause polar mutations. Using the newly constructed suicide vector, genes encoding proteins identified in the peripheral protein fraction, including those present in the Fe(III) terminal reductase complex, were systematically deleted from the S. oneidensis MR-1 genome and the resulting mutant strains were tested for the ability to respire Fe(III). Two mutant strains (DeltaSO3800 and MTRB1) were isolated and further characterized. SO3800 is a putative OM serine protease that displays sequence similarity to known bacterial adhesins. DeltaSO3800 was deficient in adhesion to hematite (Fe2O3), yet retained Fe(III) respiratory ability. DeltaSO3800 also displayed an increase in cell surface exopolymers and decreased electrophoretic mobility. MTRB1 contains a deletion in OM protein MtrB and is abolished in Fe(III) respiratory ability. MtrB contains a conserved N-terminal CXXC motif that may act as electron transfer motif or a structurally important disulfide bond. Both cysteines were independently changed to alanine via site-directed mutagenesis and subsequent "knock-in" complementation using the newly constructed suicide vector. Both MTRB1 and C42A displayed diminished Fe(III) respiratory ability and increased cytochrome content in the peripheral protein fraction while C45A displayed a phenotype similar to wild type. Potential mechanisms of Fe(III) respiration involving C42 and MtrB are proposed.
机译:微生物金属呼吸是各种生物地球化学重要过程的核心,包括粘土的风化,含Fe和Mn的矿物的生物转化以及放射性核素的还原性沉淀(例如U(VI)和Tc(VII));后者构成了放射性污染的现场站点的替代补救策略的基础。与使用NO3-,SO 42-,富马酸酯和其他化合物作为电子受体的其他呼吸过程(包括有氧呼吸和厌氧呼吸)的丰富知识相比,呼吸链中以过渡金属终止的组分尚待确定。希瓦氏菌存在于各种淡水和海洋环境中,并且可以释放出跨越氧化还原连续体的各种化合物。这些包括O2,固态和可溶性Fe(III),Mn(III),Mn(IV),NO3-,NO2-,S2O 32-,SO,DMSO,TMAO,富马酸酯,U(VI)和Tc(VII)。由于这种极端的呼吸功能,希瓦氏菌属。可能在氧化还原分层的地下环境中占主导地位,在该环境中末端电子受体在较小的时空尺度上变化。;在本研究中,构建了一种新的基因缺失系统,并用于检验P. SrA(假定的硫代硫酸盐还原酶)在沙门氏菌中的功能。 MR-1。 PsrA-null突变体(PSRA1)无法以S2O32-或S0作为末端电子受体生长,同时保留了所有测试的其他电子受体的呼吸能力。此外,PSRA1保留了下游基因psrB和psrC的mRNA转录本,表明psrA突变符合读框,并且不会引起极性突变。使用新构建的自杀载体,将编码在外围蛋白质部分中鉴定出的蛋白质的基因(包括存在于Fe(III)末端还原酶复合物中的蛋白质)从S. oneidensis MR-1基因组中系统删除,并对所得突变菌株进行了测试铁(III)的呼吸能力。分离出两个突变株(DeltaSO3800和MTRB1)并进一步鉴定。 SO3800是一种推定的OM丝氨酸蛋白酶,与已知的细菌粘附素显示序列相似性。 DeltaSO3800缺乏与赤铁矿(Fe2O3)的粘附力,但保留了Fe(III)的呼吸能力。 DeltaSO3800还显示出细胞表面外聚合物的增加和电泳迁移率的降低。 MTRB1包含OM蛋白MtrB中的缺失,并消除了Fe(III)呼吸能力。 MtrB包含一个保守的N末端CXXC基序,可以充当电子转移基序或结构上重要的二硫键。通过新构建的自杀载体,通过定点诱变和随后的“敲入”互补,将两个半胱氨酸独立地改变为丙氨酸。 MTRB1和C42A都表现出减弱的Fe(III)呼吸能力并增加了外周蛋白部分中的细胞色素含量,而C45A表现出与野生型相似的表型。提出了涉及C42和MtrB的Fe(III)呼吸的潜在机制。

著录项

  • 作者

    Burns, Justin Lee.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Biology Microbiology.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号