首页> 外文学位 >Advanced processing methods to introduce and preserve dipole orientation in organic electro-optic materials for next generation photonic devices.
【24h】

Advanced processing methods to introduce and preserve dipole orientation in organic electro-optic materials for next generation photonic devices.

机译:在下一代光子器件的有机电光材料中引入并保持偶极子取向的先进处理方法。

获取原文
获取原文并翻译 | 示例

摘要

Organic electro-optic (E-O) materials have attracted considerable research attention in the past 20 years due to their rising potentials in a lot of novel photonic applications, such as high-speed telecommunication, terahertz generation and ultra-fast optical interconnections.;Chapter 2 of this dissertation focuses on a barrier layer approach to improve the poling efficiency of electro-optic polymers. First of all, high conduction current from excessive charge injection is identified as a fundamental challenge of effective poling. After analyzing the conduction mechanism, we introduce a sol-gel derived thin titanium dioxide (TiO2) layer that can significantly block excessive charge injection and reduce the leakage current during high field poling. Ultralarge E-O coefficients, up to 160-350 pm/V at 1310 nm have been achieved by poling with such a barrier, which are 26%-40% higher than the results poled without such a TiO2 layer. This enhancement is explained by the suppressed charge injection and space charge accumulation by the insertion of the high injection barrier from the TiO2 barrier layer.;In Chapter 3, the impact of the inserted barrier layer on the temporal alignment stability of E-O polymers is discussed. Considerable stability enhancement is confirmed using both standard 500-hour temporal alignment stability test at 85 °C and thermally stimulated discharge method. We suggest that the enhancement comes from improved stability of the screening charge. During poling the additional barrier layer helps to lower the injection and thus the space charge accumulation. And this reduced space charge accumulation further helps to replace the space charge part in the total formulation of screening charge with more stable interface trapped charge. We thus expand this knowledge to a group of other materials that can also block excessive charge injection and suppressed space charge accumulation, including dielectric polymers polyvinyl alcohol (PVA), poly(4-vinylphenol) (PVP) and TOPAS as well as ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE), 65/35 copolymer), which differ largely from the others in dielectric constant, conductivity and surface properties. The only common feature of them is that they all lowered the charge injection and leakage current for 1-2 orders during poling. On every buffer layer we tried, similar trend of stability enhancement is found. These results suggest that the observed temporal stability enhancement is indeed an effect from the abovementioned mechanism.;Chapter 4 focuses on the development of an innovative new poling method, which utilizes pyroelectric effect instead of external power sources to overcome the limitations of conventional contact poling and corona poling. With careful theory assisted design, we developed a reliable protocol to efficiently introduce dipole orientation in organic E-O materials by heating and cooling them with detachable pyroelectric crystals. This new method can potentially improve the process adaptability of organic E-O materials in a variety of photonic devices. Large Pockels coefficients (up to 81 pm/V at 1.3 micron) have been successfully achieved in thin films poled using this method. The effective fields in these experiments are estimated to be around 0.5 to 0.9 MV/cm, which agree well with the electrostatics analysis using an idealized model. The same method is directly applied to surface modified hybrid polymer silicon slot waveguide ring-resonator modulators devices. A 25 pm/V tunability of resonance peak wavelength shift has been realized, which was higher than any reported results in similar devices.;Chapter 5 discusses about the possible application of the pyroelectric poling in a multi-stack waveguide device architecture. A long-existing challenge to pole E-O polymer based photonic devices is how to effectively drop the poling voltage to the core layer, which is usually sandwiched between two dielectric claddings. In the past, this was done by using relatively conductive claddings, which on the other hand can bring larger optical loss and dielectric loss to the waveguide. Thus careful engineering compromise must be made between better poling efficiency and lower loss. Pyroelectric poling as discussed in Chapter 4 opens up new possibilities. In this chapter, it is demonstrated that E-O polymer films can be poled even with 3 orders thicker dielectric layer in circuit using pyroelectric poling. The theoretical analysis matches well with the experimental results. (Abstract shortened by UMI.)
机译:由于有机电光(EO)材料在许多新型光子应用(例如高速电信,太赫兹产生和超快光学互连)中的潜力不断上升,因此在过去20年中吸引了相当多的研究关注。本文的重点是提高电光聚合物极化效率的阻挡层方法。首先,来自过量电荷注入的高传导电流被认为是有效极化的基本挑战。在分析了传导机理之后,我们引入了溶胶-凝胶衍生的二氧化钛(TiO2)薄层,该层可以显着阻止过量的电荷注入并减少高场极化过程中的泄漏电流。通过使用这种势垒进行极化,已实现了在1310 nm处高达160-350 pm / V的超大E-O系数,该系数比没有这种TiO2层极化的结果高26%-40%。通过从TiO2势垒层插入高注入势垒可抑制电荷注入和空间电荷积累,可以解释这种增强。在第三章中,讨论了插入的势垒层对E-O聚合物的时间取向稳定性的影响。使用标准的500小时在85°C的时间对准稳定性测试和热刺激放电方法,可以确认稳定性得到了显着提高。我们建议这种增强来自筛选电荷稳定性的提高。在极化过程中,附加的阻挡层有助于降低注入,从而降低空间电荷的积累。而且,这种减少的空间电荷积聚进一步有助于用更稳定的界面俘获电荷来代替筛选电荷的总配方中的空间电荷部分。因此,我们将这种知识扩展到了一组其他材料,这些材料也可以阻止过多的电荷注入并抑制空间电荷的积累,包括介电聚合物聚乙烯醇(PVA),聚(4-乙烯基苯酚)(PVP)和TOPAS以及铁电聚合物(偏二氟乙烯-三氟乙烯共聚物)(P(VDF-TrFE),65/35共聚物),在介电常数,电导率和表面性能方面与其他方法大不相同。它们的唯一共同特征是在极化过程中它们都将电荷注入和泄漏电流降低了1-2个数量级。在我们尝试的每个缓冲层上,都发现了类似的稳定性增强趋势。这些结果表明,观察到的时间稳定性的增强确实是上述机制的结果。第四章着重研究一种创新的新型极化方法,该方法利用热电效应代替外部电源来克服常规接触极化的局限性。电晕极化。通过精心的理论辅助设计,我们开发了一种可靠的协议,可以通过用可分离的热释电晶体加热和冷却有机E-O材料来有效地引入偶极子取向。这种新方法可以潜在地提高有机E-O材料在各种光子设备中的工艺适应性。使用此方法极化的薄膜已成功实现大的普克尔斯系数(在1.3微米时高达81 pm / V)。这些实验中的有效场估计约为0.5到0.9 MV / cm,这与使用理想模型进行的静电分析非常吻合。相同的方法直接应用于表面改性的杂化聚合物硅缝隙波导环形谐振器调制器设备。已经实现了共振峰波长偏移的25 pm / V可调性,这比类似设备中的任何报道的结果都要高。第5章讨论了热电极化在多堆叠波导设备体系结构中的可能应用。对于基于极柱E-O聚合物的光子器件,长期存在的挑战是如何有效地降低芯层的极化电压,芯层通常夹在两个介电包层之间。过去,这是通过使用相对导电的包层来完成的,另一方面,它们可以给波导带来更大的光学损耗和介电损耗。因此,必须在提高极化效率和降低损耗之间进行谨慎的工程折衷。第四章讨论的热电极化开辟了新的可能性。在本章中,证明了使用热电极化,即使在电路中使用3倍厚的介电层,也可以将E-O聚合物薄膜极化。理论分析与实验结果吻合良好。 (摘要由UMI缩短。)

著录项

  • 作者

    Huang, Su.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号