首页> 外文学位 >Thermodynamic modeling of martensitic transformations in shape memory alloys.
【24h】

Thermodynamic modeling of martensitic transformations in shape memory alloys.

机译:形状记忆合金中马氏体相变的热力学模型。

获取原文
获取原文并翻译 | 示例

摘要

The unusual properties of shape memory alloys (SMAs) are due to solid-to-solid martensitic transformations (MTs) which correspond to a lattice level instability of the crystal structure. Currently, there exists a shortage of material models that can capture the details of lattice level MTs occurring in SMAs.;In the first part of this work, an effective interaction potential (EIP) model is developed for the SMA AuCd. EIPs are atomic interaction potentials that are explicit functions of temperature. In particular, the Morse pair potential is used and its adjustable coefficients are taken to be temperature dependent. A hysteretic temperature-induced MT between the B2 cubic and B19 orthorhombic crystal structures is predicted. This is the behavior that is observed in the real material. The model predicts, to reasonable accuracy, the transformation strain tensor and captures the latent heat and thermal hysteresis to within an order of magnitude.;The second part of this work consists of developing a lattice dynamics model to simulate the MTs. The atomic interactions are modeled using temperature independent Morse pair potentials. The effects of atomic vibrations on the material properties are captured using the first-order self-consistent approach which consists of renormalizing the frequencies of atomic vibration using self-consistent equations. These renormalized frequencies are dependent on both configuration and temperature. The model is applied for the case of a one-dimensional bi-atomic chain. The constant Morse pair potential parameters are chosen to demonstrate the usefulness of the current model. The resulting model is evaluated by generating equilibrium paths with temperature and mechanical load as the loading parameters. In both types of loading, a first-order MT is predicted indicating that the current model is able to capture the first-order MTs that occur in SMAs.;This qualitative prediction of a first-order MT indicates the likely-hood that the current model can be used for the computational design and discovery of SMAs with better properties. Such an undertaking would involve, first, determining the potential parameters of new alloys from first-principles calculations and, second, using these parameter values with the current self-consistent model to evaluate the shape memory behavior of the new previously unstudied materials.
机译:形状记忆合金(SMA)的不寻常特性是由于固态到固态马氏体转变(MT)所致,它对应于晶体结构的晶格能级不稳定性。当前,缺乏能够捕获SMA中晶格级MT细节的材料模型。在这项工作的第一部分中,为SMA AuCd开发了一种有效的相互作用潜能(EIP)模型。 EIP是原子的相互作用势,是温度的显式函数。特别地,使用莫尔斯对势,并且其可调节系数被认为是与温度有关的。预测了B2立方晶体和B19正交晶体结构之间的磁滞温度诱导MT。这是在实际材料中观察到的行为。该模型以合理的精度预测了转变应变张量,并将潜热和热滞回捕获到一个数量级内。该工作的第二部分包括开发一个模拟MT的晶格动力学模型。使用与温度无关的莫尔斯对势能对原子相互作用进行建模。使用一阶自洽方法可以捕获原子振动对材料性能的影响,该方法包括使用自洽方程对原子振动的频率进行归一化。这些重新归一化的频率取决于配置和温度。该模型适用于一维双原子链的情况。选择恒定的摩尔斯对势参数以证明当前模型的有用性。通过生成以温度和机械载荷为载荷参数的平衡路径来评估所得模型。在两种类型的载荷中,预测一阶MT均表明当前模型能够捕获SMA中出现的一阶MT;该一阶MT的定性预测表明当前模型的可能性该模型可用于具有更好性能的SMA的计算设计和发现。这项工作首先涉及从第一性原理计算中确定新合金的潜在参数,其次,将这些参数值与当前的自洽模型一起使用,以评估以前未经研究的新材料的形状记忆行为。

著录项

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Applied Mechanics.;Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号