首页> 外文学位 >Multiscale Modeling and Computation of 3D Incompressible Turbulent Flows.
【24h】

Multiscale Modeling and Computation of 3D Incompressible Turbulent Flows.

机译:3D不可压缩湍流的多尺度建模和计算。

获取原文
获取原文并翻译 | 示例

摘要

In the first part, we present a mathematical derivation of a closure relating the Reynolds stress to the mean strain rate for incompressible turbulent flows. This derivation is based on a systematic multiscale analysis that expresses the Reynolds stress in terms of the solutions of local periodic cell problems. We reveal an asymptotic structure of the Reynolds stress by invoking the frame invariant property of the cell problems and an iterative dynamic homogenization of large- and small-scale solutions. The Smagorinsky model for homogeneous turbulence is recovered as an example to illustrate our mathematical derivation. Another example is turbulent channel flow, where we derive a simplified turbulence model based on the asymptotic flow structure near the wall. Additionally, we obtain a nonlinear model by using a second order approximation of the inverse flow map function. This nonlinear model captures the effects of the backscatter of kinetic energy and dispersion and is consistent with other models, such as a mixed model that combines the Smagorinsky and gradient models, and the generic nonlinear model of Lund and Novikov.;Numerical simulation results at two Reynolds numbers using our simplified turbulence model are in good agreement with both experiments and direct numerical simulations in turbulent channel flow. However, due to experimental and modeling errors, we do observe some noticeable differences, e.g., root mean square velocity fluctuations at Retau = 180.;In the second part, we present a new perspective on calculating fully developed turbulent flows using a data-driven stochastic method. General polynomial chaos (gPC) bases are obtained based on the mean velocity profile of turbulent channel flow in the offline part. The velocity fields are projected onto the subspace spanned by these gPC bases and a coupled system of equations is solved to compute the velocity components in the Karhunen-Loeve expansion in the online part. Our numerical results have shown that the data-driven stochastic method for fully developed turbulence offers decent approximations of statistical quantities with a coarse grid and a relatively small number of gPC base elements.
机译:在第一部分中,我们给出了闭合的数学推导,该闭合将雷诺应力与不可压缩湍流的平均应变率相关。该推导基于系统的多尺度分析,该分析根据局部周期单元问题的解决方案来表达雷诺应力。我们通过调用单元格问题的框架不变性质以及大型和小型解决方案的迭代动态均质化,揭示了雷诺应力的渐近结构。以均质湍流的Smagorinsky模型为例,说明了我们的数学推导。另一个例子是湍流通道流,其中我们基于壁附近的渐近流动结构推导了简化的湍流模型。此外,我们通过使用逆流图函数的二阶逼近来获得非线性模型。该非线性模型捕获了动能和散射的反向散射的影响,并且与其他模型(例如,结合了Smagorinsky和梯度模型的混合模型以及通用的Lund和Novikov非线性模型)相一致。使用我们简化的湍流模型的雷诺数与湍流通道中的实验和直接数值模拟都非常吻合。但是,由于实验和建模错误,我们确实观察到一些明显的差异,例如Retau = 180时的均方根速度波动;在第二部分中,我们提出了使用数据驱动的计算完全展开的湍流的新观点。随机方法。基于离线部分湍流通道的平均速度分布,获得了通用多项式混沌(gPC)基。将速度场投影到这些gPC基所跨越的子空间上,并求解方程组以计算在线部分中Karhunen-Loeve展开中的速度分量。我们的数值结果表明,用于完全发展的湍流的数据驱动的随机方法提供了具有粗略网格和相对少量gPC基本元素的统计量的近似值。

著录项

  • 作者

    Hu, Xin.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号