首页> 外文学位 >High efficiency RCCI combustion.
【24h】

High efficiency RCCI combustion.

机译:RCCI高效燃烧。

获取原文
获取原文并翻译 | 示例

摘要

An experimental investigation of the pragmatic limits of Reactivity Controlled Compression Ignition (RCCI) engine efficiency was performed. The study utilized engine experiments combined with zero-dimensional modeling. Initially, simulations were used to suggest conditions of high engine efficiency with RCCI. Preliminary simulations suggested that high efficiency could be obtained by using a very dilute charge with a high compression ratio. Moreover, the preliminary simulations further suggested that with simultaneous 50% reductions in heat transfer and incomplete combustion, 60% gross thermal efficiency may be achievable with RCCI.;Following the initial simulations, experiments to investigate the combustion process, fuel effects, and methods to reduce heat transfer and incomplete combustion reduction were conducted. The results demonstrated that the engine cycle and combustion process are linked, and if high efficiency is to be had, then the combustion event must be tailored to the initial cycle conditions. It was found that reductions to engine heat transfer are a key enabler to increasing engine efficiency. In addition, it was found that the piston oil jet gallery cooling in RCCI may be unnecessary, as it had a negative impact on efficiency. Without piston oil gallery cooling, it was found that RCCI was nearly adiabatic, achieving 95% of the theoretical maximum cycle efficiency (air standard Otto cycle efficiency).
机译:对反应性控制压燃(RCCI)发动机效率的实用极限进行了实验研究。该研究利用发动机实验与零维建模相结合。最初,使用模拟来建议使用RCCI的高发动机效率条件。初步模拟表明,可以通过使用具有高压缩比的非常稀薄的装料来获得高效率。此外,初步模拟还表明,同时降低50%的热传递和不完全燃烧,使用RCCI可以实现60%的总热效率。;在初始模拟之后,进行了研究燃烧过程,燃料效果的实验以及方法减少了热传递,减少了不完全燃烧。结果表明,发动机循环和燃烧过程是相互联系的,如果要实现高效率,则燃烧事件必须适合初始循环条件。发现减少发动机的热传递是提高发动机效率的关键因素。另外,发现在RCCI中的活塞喷油通道冷却可能是不必要的,因为这会对效率产生负面影响。在没有活塞油道冷却的情况下,发现RCCI几乎是绝热的,达到了理论最大循环效率(空气标准奥托循环效率)的95%。

著录项

  • 作者

    Splitter, Derek A.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Automotive.;Energy.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 319 p.
  • 总页数 319
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号