首页> 外文学位 >Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments.
【24h】

Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments.

机译:核反应堆环境中的非线性超声测量。

获取原文
获取原文并翻译 | 示例

摘要

Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing.;The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized.;Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.
机译:能源部核能办公室(DOE-NE)的几个计划,例如燃料循环研究与开发(FCRD),先进反应堆概念(ARC),轻水堆可持续性和下一代核电站(NGNP)。研究先进和现有反应堆的新燃料,材料和检查范例。此类程序的主要目标是了解辐照期间这些燃料和材料的性能。在DOE-NE的FCRD计划中,基于超声的技术被认为是获取辐照测试期间表征新候选燃料和结构材料的性能和性能所需的高保真,高精度数据的关键方法。辐射,高温和高压会限制可用的工具和表征方法。本文将探讨两种超声表征技术。第一个有限振幅波传播已被证明对微结构材料特性变化敏感。它是确定燃料排放量的理想选择。但是,它尚未在原位反应器应用中得到证明。在本文中,将使用有限振幅波传播来测量Al-6061的组织演变。这是在超过200°C的温度下以及在辐照测试期间有限振幅波传播的首次演示。其次,将开发一种基于接触非线性声学理论的方法来识别压缩裂纹。压缩的裂纹通常对超声波传播是透明的。然而,通过测量在有限振幅波传播过程中产生的谐波含量,表明甚至可以表征压缩裂纹。最后,开发了能够进行这些测量的压电换能器。具体来说,在麻省理工学院的研究堆中测试了三种压电传感器(钛酸铋,氮化铝和氧化锌)对中子通量的影响为8.65x10 20 n / cm2。已证明钛酸铋能够进行高达5 x1020 n / cm2的传导,氧化锌能够进行高达6.27 x1020 n / cm 2的传导,以及氮化铝能够进行高达8.65xx10 20 n / cm2的传导。

著录项

  • 作者

    Reinhardt, Brian T.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Acoustics.;Nuclear physics and radiation.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号