首页> 外文学位 >Earthquake Wave-Soil-Structure Interaction Analysis of Tall Buildings.
【24h】

Earthquake Wave-Soil-Structure Interaction Analysis of Tall Buildings.

机译:高层建筑的地震波-土壤-结构相互作用分析。

获取原文
获取原文并翻译 | 示例

摘要

Earthquakes cause damages to structures and result in great human casualties and economic loss. A fraction of the kinetic energy released from earthquakes is transferred into buildings through soils. The investigation on the mechanism of the energy transferring from soils to buildings during earthquakes is critical for the design of earthquake resistant structures and for upgrading existing structures. In order to understand this phenomena well, a wave-soil-structure interaction analysis is presented. The earthquake wave-soil-structure interaction analysis of tall buildings is the main focus of this research. There are two methods available for modeling the soil-structure interaction (SSI): the direct method and substructure method. The direct method is used for modeling the soil and a tall building together. However, the substructure method is adopted to treat the unbounded soil and the tall building separately. The unbounded soil is modeled by using the Scaled Boundary Finite-Element Method (SBFEM), an infinitesimal finite-element cell method, which naturally satisfies the radiation condition for the wave propagation problem. The tall building is modeled using the standard Finite Element Method (FEM). The SBFEM results in fewer degrees of freedom of the soil than the direct method by only modeling the interface between the soil and building. The SBFEM is implemented into a 3-Dimensional Dynamic Soil-Structure Interaction Analysis program (DSSIA-3D) in this study and is used for investigating the response of tall buildings in both the time domain and frequency domain. Three different parametric studies are carried out for buildings subjected to external harmonic loadings and earthquake loadings. The peak displacement along the height of the building is obtained in the time domain analysis. The coupling between the building's height, hysteretic damping ratio, soil dynamics and soil-structure interaction effect is investigated. Further, the coupling between the structure configuration and the asymmetrical loadings are studied. The findings suggest that the symmetrical building has a higher earthquake resistance capacity than the asymmetrical buildings. The results are compared with building codes, field measurements and other numerical methods. These numerical techniques can be applied to study other structures, such as TV towers, nuclear power plants and dams.
机译:地震会损坏建筑物,并造成巨大的人员伤亡和经济损失。地震释放的一部分动能通过土壤转移到建筑物中。对地震过程中能量从土壤传递到建筑物的机理的研究对于抗震结构的设计和现有结构的升级至关重要。为了更好地理解这种现象,提出了波浪-土壤-结构相互作用分析。高层建筑的地震波-土-结构相互作用分析是本研究的重点。有两种方法可以对土壤-结构相互作用(SSI)进行建模:直接方法和子结构方法。直接方法用于一起模拟土壤和高层建筑。但是,采用下部结构法分别处理无界土和高层建筑。无边界土壤是通过使用比例边界有限元方法(SBFEM)建模的,该方法是一种无穷小有限元单元法,自然可以满足波传播问题的辐射条件。使用标准的有限元方法(FEM)对高层建筑进行建模。通过仅对土壤和建筑物之间的界面进行建模,与直接方法相比,SBFEM导致的土壤自由度更少。在这项研究中,将SBFEM实施到三维动态土壤-结构相互作用分析程序(DSSIA-3D)中,并用于调查高层建筑在时域和频域上的响应。对于经受外部谐波荷载和地震荷载的建筑物进行了三种不同的参数研究。沿建筑物高度的峰位移在时域分析中获得。研究了建筑物的高度,滞后阻尼比,土壤动力学和土-结构相互作用之间的耦合关系。此外,研究了结构配置和不对称载荷之间的耦合。研究结果表明,对称建筑物比非对称建筑物具有更高的抗震能力。将结果与建筑规范,现场测量和其他数值方法进行比较。这些数值技术可用于研究其他结构,例如电视塔,核电站和水坝。

著录项

  • 作者

    Yao, Ming Ming.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Engineering Geophysical.;Engineering Mechanical.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号