首页> 外文学位 >Mechanical reinforcement and segmental dynamics of polymer nanocomposites.
【24h】

Mechanical reinforcement and segmental dynamics of polymer nanocomposites.

机译:聚合物纳米复合材料的机械增强和分段动力学。

获取原文
获取原文并翻译 | 示例

摘要

The addition of nanofiller into a polymer matrix will dramatically change the physical properties of polymer. The introduction of nanofiller makes the polymer more applicable in many industries, such as automobile tires, coatings, semiconductors, and packaging. The altered properties are not the simple combination of the characters from the two components. The interactions in polymer nanocomposites play an important role in determining the physical properties.;This dissertation focuses on the mechanical properties of polymer nanocomposites (silica/poly-2-vinylpyridine) above their glass transition temperature Tg, as a model for automobile tires, which utilize small silica particles in crosslinked rubber far above Tg. We also investigate the impacts of the interaction between particle filler and polymer matrix on the altered mechanical properties.;Dielectric relaxation spectroscopy (DRS) is used to study the glassy bound polymer layers formed around the particles. The results show evidence of the existence of immobilized polymer layers at the surface of each nanoparticle. At the same time, the thickness of the immobilized polymer layers is quantified and formed to be around 2 nm. Then we consider particles with glassy bound polymer layers are bridged together (either rubbery bridge or glassy bridge) by polymer chains and form small clusters. Clusters finally percolate to form a particle-polymer network as loading fraction increases. Rheology is used to study the network formation, and to predict the boundary of rubbery bridge and glassy bridge regimes. The distance between particles determines the type of polymer bridging. The particle spacing larger than Kuhn length makes flexible (rubbery) bridge with rheology described by a flexible Rouse model for percolation. When the spacing is shorter than the Kuhn length (~ 1nm), stiffer bridge forms instead, which is called glassy bridge. The mechanical differences between rubbery bridge and glassy bridge, and the effect of Mw on the formation of glassy bridge, are also discussed.
机译:将纳米填料添加到聚合物基质中将显着改变聚合物的物理性质。纳米填料的引入使该聚合物更适用于许多行业,例如汽车轮胎,涂料,半导体和包装。更改后的属性不是两个组件中字符的简单组合。聚合物纳米复合材料中的相互作用在决定物理性能方面起着重要作用。;本文重点研究了聚合物纳米复合材料(二氧化硅/聚-2-乙烯基吡啶)在其玻璃化转变温度Tg以上的力学性能,以此作为汽车轮胎的模型。在远高于Tg的交联橡胶中使用小的二氧化硅颗粒。我们还研究了颗粒填料与聚合物基体之间相互作用对改变后的机械性能的影响。介电弛豫光谱法(DRS)用于研究颗粒周围形成的玻璃态结合聚合物层。结果表明在每个纳米颗粒的表面上存在固定的聚合物层的证据。同时,固定的聚合物层的厚度被量化并形成为约2nm。然后我们认为具有玻璃态结合的聚合物层的粒子通过聚合物链桥接在一起(橡胶桥或玻璃桥)并形成小簇。随着负载率的增加,团簇最终渗透形成颗粒-聚合物网络。流变学用于研究网络的形成,并预测橡胶桥和玻璃桥体系的边界。粒子之间的距离决定了聚合物桥接的类型。大于Kuhn长度的粒子间距使弹性(橡胶)桥具有流变学,该流变由弹性Rouse模型描述用于渗流。当间距小于Kuhn长度(〜1nm)时,会形成较硬的桥,称为玻璃桥。还讨论了橡胶桥和玻璃桥之间的机械差异,以及Mw对玻璃桥形成的影响。

著录项

  • 作者

    Gong, Shushan.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号