首页> 外文学位 >Synthesis and Characterization of Two Component Alloy Nanoparticles.
【24h】

Synthesis and Characterization of Two Component Alloy Nanoparticles.

机译:两种成分合金纳米粒子的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature.;Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (Tm 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can reflow at lower temperatures leading to lower thermal stresses in adjacent electronic components during the manufacturing process, offering better thermal and mechanical properties suitable for high temperature electronic applications.;The second system studied here is Ag-Ni ANPs and electron microscopy and spectroscopy confirm the formation of Ag0.5Ni0.5 ANPs with cubic structure, stable up to125°C. Atomic size and crystalline structure have less effect on the alloy formation process at the nanoscale; therefore, metals with limited solubility in bulk could form solid solutions at the nanoscale. Ag and Ni are immiscible in both solid and liquid states due to the large lattice mismatch and thermodynamically, the formation of core-shell structures is favoured. The effect of capping agents on the alloying was also studied here. Polyvinyl alcohol (PVA) with shorter length shows Ag-Ni ANPs with higher content of Ni compared to sodium citrate; the systems lead to the formation of Ag, Ag2O2 and Ag0.5Ni 0.5 ANPs.;The study of multi-component nanoparticle systems could shed light into the various parameters that affect stability of structure and phases, which could be quite distinct from their bulk counterparts.
机译:合金化是通过协同结合至少两种成分来生产新材料的古老技巧。纳米科学的新发展使合金元素的尺寸,溶解度和浓度等新的自由度得以用于合金纳米颗粒(ANP)物理性能的设计中。作为多功能材料的ANP在催化,生物医学技术和电子学中都有应用。 ANP的相图鲜为人知,可能无法代表整体图像,而且,具有不同微晶取向和组成的ANP可能会远离平衡状态。这里,我们在室温下通过化学还原方法研究了Au-Sn和Ag-Ni ANP的合成和稳定性。由于Au和Sn的氧化还原电位差异很大,共还原不是可重复的方法。然而,发现两步连续还原对于生成Au-Sn ANP更为可靠,该过程包括在第一步中形成簇(不带封端剂或具有弱配位的表面活性剂分子),然后在存在下进行第二步还原。另一种金属盐。我们的观察结果还表明,封端剂(溴化十六烷铵或(CTAB))和聚丙烯酸(PAA)在合金化过程中起关键作用,而较短长度的封端剂(PAA)可能会促进单个成分的扩散,从而实现更好的合金化。使用不同摩尔比的Sn和Au前驱体研究合金元素对熔点的影响,并通过各种显微镜和光谱技术以及差示扫描量热法(DSC)确定了晶体结构和熔点。与大共晶点(Tm 280°C)相比,由于尺寸和形状的影响,Au-Sn ANPs的熔融转变过程中出现了明显的下降(最高150°C)。 Au-Sn ANP作为无铅焊料材料具有独特的优势,可以在较低温度下回流,从而在制造过程中降低相邻电子元件中的热应力,从而提供适合高温电子应用的更好的热性能和机械性能。本文研究的第二个系统是Ag-Ni ANP,电子显微镜和光谱学证实形成了立方结构的Ag0.5Ni0.5 ANP,可在高达125°C的温度下稳定。原子尺寸和晶体结构在纳米级对合金形成过程的影响较小。因此,散装溶解度有限的金属可以在纳米级形成固溶体。由于较大的晶格失配,Ag和Ni在固态和液态均不溶混,并且在热力学上,核-壳结构的形成是有利的。此处还研究了封端剂对合金化的影响。长度较短的聚乙烯醇(PVA)显示,与柠檬酸钠相比,Ag-Ni ANPs的镍含量更高;该体系导致Ag,Ag2O2和Ag0.5Ni 0.5 ANPs的形成。多组分纳米颗粒体系的研究可以揭示影响结构和相稳定性的各种参数,这与它们的本体相当。 。

著录项

  • 作者

    Tabatabaei, Salomeh.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号