首页> 外文学位 >Transcriptome characterization of the ectomycorrhizal fungus Laccaria bicolor to understand metabolic reprogramming during symbiotic interaction with Populus tremuloides.
【24h】

Transcriptome characterization of the ectomycorrhizal fungus Laccaria bicolor to understand metabolic reprogramming during symbiotic interaction with Populus tremuloides.

机译:外生菌根真菌Laccaria bicolor的转录组表征,以了解与杨(Populus tremuloides)共生相互作用期间的代谢重编程。

获取原文
获取原文并翻译 | 示例

摘要

Ectomycorrhizal (ECM) symbiosis is a mutualistic association between soil fungi and the lateral roots of tree species dominating forest ecosystems. This mutualistic association plays a fundamental role in shaping healthy plant communities by enhancing soil nutrient mobilization and uptake, particularly nitrogen. ECM fungi are the most efficient exploiters in nitrogen (N)-limiting environments and play a critical role in N acquisition by plants. However, very little is known about the regulatory mechanisms employed by ECM fungus to exploit diverse N resources. Our main goal was to understand the regulation of molecular processes in a specific ECM fungus that drive efficient nutrient mobilization and development of symbiosis. A comparative transcriptomics approach was used to understand the development of symbiosis and metabolic reprogramming in the ECM fungus, Laccaria bicolor, an efficient growth-promoting fungus during its interaction with host Populus tremuloides. The global gene expression analysis during different stages of symbiosis development revealed potential genetic determinants and molecular processes that modulate early signaling events along with reorientation of metabolism and morphology in ECM fungi that are required for symbiotic establishment. The transcriptome characterization of Laccaria during functional symbiosis revealed that N was assimilated via a glutamate dehydrogenase (GDH-NADPH) pathway during ECM symbiosis and that glutamate was the primary amino acid transported from the fungal partner to the host. The results also suggested that urea and allantoate may serve as N-rich metabolites that are exchanged during symbiosis. It was demonstrated that general amino acid permeases (GAPs) play an important role in mediating amino acid transport during symbiosis. To understand how an ECM fungus exploits diverse N resources and improves plant nutrition, a Laccaria transcriptome was analyzed on variable N regimens. The glutamine synthetase/glutamate synthase (GS/GOGAT) pathway was the main route of N assimilation under N-limiting conditions. Results demonstrated that Laccaria has regulated the uptake system for oligopeptide transport and endogenous metabolism to utilize peptides as a sole N source. Overall, the results of this study provided a better understanding of molecular mechanisms that drive efficient nutrient assimilation during ectomycorrhizal symbiosis and, hence, give us a better understanding of an essential biological process that controls the health and vigor of forest ecosystems.
机译:外生菌根共生是土壤真菌与主导森林生态系统的树种侧根之间的相互联系。这种相互联系的协会通过增强土壤养分的动员和吸收,特别是氮素,在塑造健康植物群落方面发挥着根本作用。 ECM真菌在限制氮(N)的环境中是最有效的开发者,并且在植物吸收氮中起关键作用。但是,关于ECM真菌利用各种N资源的调控机制知之甚少。我们的主要目标是了解特定ECM真菌中分子过程的调控,以驱动有效的营养素动员和共生的发展。比较转录组学方法用于了解ECM真菌双色紫胶菌(Laccaria bicolor)中的共生和代谢重编程的发展,双色紫胶菌在与寄主海藻相互作用期间是一种有效的生长促进真菌。共生发展不同阶段的全球基因表达分析揭示了潜在的遗传决定因素和分子过程,这些基因和分子过程调节了早期信号传递事件,以及共生建立所需的ECM真菌的代谢和形态重新定向。在功能性共生过程中,对laccaria的转录组表征表明,在ECM共生过程中,N通过谷氨酸脱氢酶(GDH-NADPH)途径被同化,并且谷氨酸是从真菌伴侣向宿主转运的主要氨基酸。结果还表明,尿素和尿囊酸酯可能是共生过程中交换的富含N的代谢产物。已证明,一般的氨基酸渗透酶(GAP)在共生过程中介导氨基酸转运中起重要作用。为了了解ECM真菌如何利用多种N资源并改善植物营养,我们对N可变的N方案进行了Laccaria转录组的分析。谷氨酰胺合成酶/谷氨酸合成酶(GS / GOGAT)途径是氮限制条件下氮同化的主要途径。结果表明,拉卡里亚已经调节了寡肽运输和内源性代谢的吸收系统,以利用肽作为唯一的氮源。总体而言,这项研究的结果使人们更好地理解了在外生菌根共生过程中驱动有效养分吸收的分子机制,从而使我们对控制森林生态系统健康和活力的基本生物学过程有了更好的理解。

著录项

  • 作者

    Trivedi, Geetika.;

  • 作者单位

    The University of Alabama in Huntsville.;

  • 授予单位 The University of Alabama in Huntsville.;
  • 学科 Biology Molecular.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TS97-4;
  • 关键词

  • 入库时间 2022-08-17 11:42:26

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号