首页> 外文学位 >Thermoacoustic phenomena in small-scale systems.
【24h】

Thermoacoustic phenomena in small-scale systems.

机译:小型系统中的热声现象。

获取原文
获取原文并翻译 | 示例

摘要

Thermoacoustic phenomena in small-scale systems are investigated, and results are presented on the following topics: the acoustic properties of porous and fibrous materials, the modeling of thermoacoustic resonators with nonuniform medium and boundary conditions, and the harvesting of energy from tonal sound excited by heat addition and vortex shedding.;The transfer function measurement system is used to find the acoustic properties of porous and fibrous materials. The complex wave numbers and characteristic impedances of reticulated vitreous carbon (RVC) and plastic mesh are determined using a variation of the three-microphone and four-microphone methods with the transfer function technique. The wave numbers and characteristic impedances of RVC and plastic mesh can be estimated from the obtained results. To find the effect of temperature difference, relative acoustic power changes across RVC, stacked plastic screens and stacked steel screens at DeltaT=0°C and at DeltaT≈100°C are experimentally determined and compared. It can be concluded that these porous stacks generate acoustic power under a temperature gradient, partly compensating for the acoustic losses when sound energy propagates through the stack.;The numerical modeling of thermoacoustic resonators with nonuniform media and boundary conditions is carried out. Sparse numerical grids are used in the bulk of resonators, and in boundary layers near solid surfaces analytical solutions impose proper boundary conditions. The main advantage of this method is computational efficiency. Since it can quickly estimate the effects of all parameters of geometry and material properties, the present model is suitable for optimizing thermoacoustic systems. A small-scale, low-aspect-ratio thermoacoustic engine with a flexing wall oscillator is modeled. If the natural frequency of the flexing wall oscillator is selected to be much lower than the natural frequency of the acoustic resonator, the engine operates at satisfactory efficiencies and requires a relatively low temperature difference threshold. Heat transfer calculations, consideration of large-amplitude acoustic effects, and analysis of electroacoustic transducers are needed for further developments.;Three resonator-type acoustic energy harvesters are tested and demonstrated. In the resonator, tonal sound is excited by heat addition or vortex shedding in the presence of mean flow. A PZT disk with a brass back plate is used as an electroacoustic transducer. The first system with baffles in the mean flow generated more than 0.5 mW of electric power at a resistance of 10 kO and a mean flow velocity around 2.6 m/s. The second system has one side open and generated a maximum electric power of 0.446 mW at a resistance of 14.8 kO. In the third experiment, the closed resonator produced a maximum harvested electric power of 7.02 mW at a resistance of 14.8 kO. The experimental results correlate reasonably well with those of previous studies by other researchers. To increase power output, optimization of the piezoelement and system geometry is required.
机译:研究了小规模系统中的热声现象,并在以下主题上给出了结果:多孔和纤维材料的声学特性,具有非均匀介质和边界条件的热声谐振器的建模以及从被激励的音调中收集能量热量增加和涡旋脱落。;传递函数测量系统用于发现多孔和纤维材料的声学特性。网状玻璃碳(RVC)和塑料网的复波数和特征阻抗使用传递函数技术使用三麦克风和四麦克风方法的变化来确定。 RVC和塑料网的波数和特征阻抗可以从获得的结果中估算出来。为了找到温差的影响,通过实验确定并比较了在ΔT= 0℃和在ΔT≈ 100℃下RVC,堆叠的塑料筛网和堆叠的钢筛网的相对声功率变化。可以得出结论,这些多孔叠层在温度梯度下产生声能,部分补偿了声能通过叠层传播时的声损耗。进行了介质和边界条件不均匀的热声谐振器的数值模拟。稀疏的数值网格用于大量的谐振器中,并且在固体表面附近的边界层中,解析解决方案会施加适当的边界条件。这种方法的主要优点是计算效率。由于它可以快速估计几何形状和材料属性的所有参数的影响,因此本模型适用于优化热声系统。对具有挠曲壁振荡器的小型,低纵横比的热声发动机进行了建模。如果将挠性壁振荡器的固有频率选择为远低于声谐振器的固有频率,则发动机以令人满意的效率运转并且需要相对较低的温度差阈值。进一步的发展需要传热计算,大幅度声学效应的考虑以及电声换能器的分析。;测试并演示了三种谐振器型声能采集器。在谐振器中,在存在平均流的情况下,通过加热量或涡旋脱落来激发音调。具有黄铜背板的PZT盘用作电声换能器。第一个在平均流中带有挡板的系统以10 kO的电阻和大约2.6 m / s的平均流速产生了超过0.5 mW的电力。第二个系统的一侧断开,并在14.8 kO的电阻下产生0.446 mW的最大电功率。在第三个实验中,封闭的谐振器在14.8 kO的电阻下产生了7.02 mW的最大收集功率。实验结果与其他研究人员先前的研究相当合理地相关。为了增加功率输出,需要优化压电元件和系统几何形状。

著录项

  • 作者

    Jung, Sungmin.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号