首页> 外文学位 >Automated process and geometry design optimization of a coal combustion reactor.
【24h】

Automated process and geometry design optimization of a coal combustion reactor.

机译:煤燃烧反应器的自动化过程和几何设计优化。

获取原文
获取原文并翻译 | 示例

摘要

The importance of design of an optimized and efficient combustion or gasification system, the complexity of such an optimization problem with conflicting objectives and the inadequacy of traditional optimization methods in searching the entire design space and their random nature, presents the significant importance of proposing an automated multi-objective optimization method in the field of combustion and gasification design. In the current research, automated multi-objective optimization has been implemented in geometry and process design of a coal combustion reactor. Coal particles are mixed with air and are injected into the reactor via four tangential inlets to create swirl flow. A combination of single phase and multi-phase reactions has been considered to simulate the combustion process. All the steps of geometry creation, grid generation and CFD simulation have been integrated automatically using macro files to run in batch mode in an optimization platform, i.e., modeFrontier. Three multi-objective optimization problems have been solved with two, four and six input variables. The epsilon-constraint method has been implemented for multi-objective optimization. Each multi-objective optimization problem consists of individual single-objective optimization problems which are solved by the SIMPLEX method. Two conflicting objectives, i.e., NO mass fraction and CH4 mass fraction, have been selected for all optimization problems. Results from all single objective optimizations have been summarized to obtain the Pareto Set. It is presented that automated multi-objective optimization is a reliable and promising method to integrate CAD and CFD tools with optimization methods in an automated process to perform faster, more accurate, more efficient and more cost-effective designs in the field of combustion and gasification.
机译:优化高效的燃烧或气化系统设计的重要性,目标冲突的优化问题的复杂性以及传统优化方法在搜索整个设计空间及其随机性方面的不足,提出了提出自动化方案的重要意义。燃烧和气化设计领域的多目标优化方法。在当前的研究中,已经在煤燃烧反应堆的几何形状和过程设计中实现了自动化的多目标优化。煤颗粒与空气混合,并通过四个切向入口注入反应器以产生涡流。已经考虑将单相和多相反应的组合模拟燃烧过程。使用宏文件自动集成了几何创建,网格生成和CFD模拟的所有步骤,以在优化平台(即modeFrontier)中以批处理模式运行。使用两个,四个和六个输入变量解决了三个多目标优化问题。 ε约束方法已实现用于多目标优化。每个多目标优化问题都由单个的单目标优化问题组成,这些问题可以通过SIMPLEX方法解决。对于所有优化问题,已经选择了两个相互矛盾的目标,即NO质量分数和CH4质量分数。来自所有单个目标优化的结果已被汇总以获得帕累托集。研究表明,自动化多目标优化是一种可靠且有前途的方法,可以将CAD和CFD工具与优化方法集成到一个自动化过程中,从而在燃烧和气化领域执行更快,更准确,更高效和更具成本效益的设计。

著录项

  • 作者

    Salahi, Sara.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Alternative Energy.;Energy.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号