首页> 外文学位 >Multi-scale free-space optical interconnects for intrachip global communication.
【24h】

Multi-scale free-space optical interconnects for intrachip global communication.

机译:用于芯片内全局通信的多尺度自由空间光学互连。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes the design, analysis and experimental validation of new concepts addressing the escalating issues facing metal wires for intrachip global communication. The wires between the most remotely separated microchip regions, called global wires, are disproportionately problematic to implement and are predicted to fall short of the requirements for communication capacity in future microchip technologies. System-level interconnect modeling based on wire-length estimation shows that, even though they represent a very small percentage of the total wires on the chip, global wires consume excessive chip area and dissipate excessive power, due to the number of required repeaters, and significantly increase routing complexity due to via blockages. These trends herald the global interconnection-limited performance saturation of Moore's Law for microchips. Therefore, global wires are selected as candidates for replacement by optical interconnects. Three multi-scale optical systems are discussed to show the performance, misalignment tolerance, and functionality enhancement that can be gained by the synergistic combination of optics of multiple scales. Multi-scale optical design is then applied to intrachip interconnects to meet the configuration flexibility and global bandwidth capacity requirements of future microchips. The multi-scale free-space optical interconnection system designed, analyzed and experimentally validated in this work is tailored to meet the density and configuration flexibility requirements of future microchip generations. The use of multiple optical scales is shown to enhance performance, misalignment tolerance and functionality over the use of a single optical scale. Finally, a three-terminal optical device structure is proposed and discussed, to address the requirements of a low-power and high-density source for such a system.
机译:本文介绍了解决芯片内部全局通信所面临的金属线升级问题的新概念的设计,分析和实验验证。距离最远的微芯片区域之间的导线(称为全局导线)在实施时会成比例地出现问题,并且预计将无法满足未来微芯片技术对通信容量的要求。基于线长估计的系统级互连模型显示,即使它们仅占芯片上总线的百分比很小,但由于所需中继器的数量,全局线会消耗过多的芯片面积并消耗过多的功率,并且由于过孔阻塞,大大增加了布线的复杂性。这些趋势预示着全球互连限制的微芯片摩尔定律的性能饱和。因此,选择全局导线作为通过光学互连替换的候选导线。讨论了三个多尺度光学系统,以显示通过多尺度光学的协同组合可以获得的性能,未对准公差和功能增强。然后将多尺度光学设计应用于芯片内部互连,以满足未来微芯片的配置灵活性和全球带宽容量要求。在这项工作中设计,分析和实验验证的多尺度自由空间光学互连系统是为满足下一代微芯片的密度和配置灵活性要求而量身定制的。示出了使用多个光学标尺比使用单个光学标尺可以增强性能,未对准公差和功能。最后,提出并讨论了一种三端光学器件结构,以解决这种系统的低功率和高密度光源的要求。

著录项

  • 作者

    McFadden, Michael J.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号