首页> 外文学位 >Modulation of cardiovascular device infection by biomaterial surface chemistry and shear stress.
【24h】

Modulation of cardiovascular device infection by biomaterial surface chemistry and shear stress.

机译:通过生物材料表面化学和剪切应力调节心血管设备感染。

获取原文
获取原文并翻译 | 示例

摘要

Infection of implanted cardiovascular biomaterials poses a serious complication and involves multifaceted interactions involving bacteria, the implant surface, the presence of host proteins, and local hydrodynamic conditions. These infections are initiated by bacterial adhesion to the surface of the implant followed by colonization and biofilm formation. Our hypothesis is that modification of biomaterial surface chemistry can diminish the probability of cardiovascular device infection by impeding initial bacterial adhesion and subsequent biofilm formation.; A rotating disc model, which generates shear stress within a physiological range, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polyurethanes modified with surface modifying endgroups (SMEs) and phospholipid polymer surfaces under dynamic flow conditions. Leukocyte adhesion in serum exhibited a shear dependency with polyethylene oxide SMEs and phospholipid polymer surfaces strongly inhibiting leukocyte adhesion. Bacterial adhesion was primarily independent of material and shear stress effects in serum, and diminished significantly to ≤10% compared to serum-free media. This suggests that protein adsorption may play a greater role in limiting initial bacterial adhesion than surface chemistry effects. While initial S. epidermidis adhesion is inhibited in the presence of adsorbed proteins, interbacterial adhesion, possibly aided by slime production, leads to the formation of a robust mature biofilm. However, the formation of biofilm can be impeded by biomaterial surface chemistry. Modification of cardiovascular biomaterials with PEO endgroups significantly reduced S. epidermidis adhesion, colonization, and biofilm formation over 48 hours. Therefore, the effects of biomaterial surface chemistry are not present in the early stages of biofilm development but manifest themselves in the long term behavior of bacteria by modulating adhesion, accumulation, and slime production over time.; Biomaterial surface chemistry influences leukocyte adhesion and function resulting in a compromised host response. PEO has detrimental effects on adherent neutrophils as indicated by a decrease in production over time of O2 - and NO in response to a stimulus. Our results also suggest that bactericidal mechanisms in neutrophils involving NO generation (NOS pathway) are further compromised than O2 - producing pathways (NADPH oxidase) upon exposure to biomaterials resulting in a diminished microbial killing capacity which can increase the probability of device centered infections.
机译:植入的心血管生物材料的感染构成了严重的并发症,涉及细菌,植入物表面,宿主蛋白的存在以及局部流体动力学条件等多方面的相互作用。这些感染是由细菌粘附到植入物表面开始的,然后是定植和生物膜形成。我们的假设是,生物材料表面化学的改变可以通过阻止最初的细菌粘附和随后的生物膜形成来降低心血管设备感染的可能性。旋转盘模型在生理范围内产生切应力,用于表征白细胞和表皮葡萄球菌在动态流动条件下在表面改性端基(SMEs)和磷脂聚合物表面改性的聚氨酯上的粘附。血清中的白细胞粘附表现出对聚环氧乙烷SMEs的剪切依赖性,磷脂聚合物表面强烈抑制白细胞粘附。细菌粘附主要独立于血清中的物质和剪切应力影响,与无血清培养基相比,细菌粘附力显着降低至≤10%。这表明,与表面化学作用相比,蛋白质吸附在限制初始细菌粘附方面可能发挥更大的作用。虽然最初的表皮葡萄球菌粘附在存在吸附蛋白的情况下会受到抑制,但细菌间的粘附(可能通过粘液产生)会导致形成牢固的成熟生物膜。但是,生物膜的形成会阻碍生物膜的形成。用PEO端基修饰心血管生物材料可在48小时内显着降低表皮葡萄球菌的粘附,定植和生物膜形成。因此,生物材料表面化学的作用并不存在于生物膜发展的早期阶段,而是通过随着时间的推移调节粘附,积累和粘液产生而表现在细菌的长期行为中。生物材料表面化学影响白细胞粘附和功能,导致宿主反应受损。 PEO对黏附的中性粒细胞有不利影响,如刺激产生的O2-和NO随时间的减少而表明。我们的结果还表明,接触生物材料后,涉及NO产生(NOS途径)的嗜中性粒细胞的杀菌机制比产生O2的途径(NADPH氧化酶)受到的损害更大,从而导致微生物杀伤能力降低,从而增加了以设备为中心的感染的可能性。

著录项

  • 作者

    Patel, Jasmine Dilip.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号