首页> 外文学位 >Modeling solid tumor growth in complex, dynamic geometries.
【24h】

Modeling solid tumor growth in complex, dynamic geometries.

机译:在复杂,动态的几何图形中模拟实体瘤的生长。

获取原文
获取原文并翻译 | 示例

摘要

In the last ten years, nonlinear continuum models have been used to study the effects of shape instabilities on avascular, angiogenic and vascular solid tumor growth. Shape instabilities are important because the mechanisms that control the tumor morphology also control the ability of the tumor to be locally invasive, and local invasiveness is believed to be a precursor of metastasis. In this thesis, I use a multiphase mixture model, taking into account homotype adhesion between tumor cells and heterotype adhesion between the cells and a basement membrane. I simplified the description of membrane elasticity to penalize global stretching and bending. The governing equations are derived using a variational approach that ensures the themodynamic consistency of the model. To solve the governing equations efficiently, I develop an adaptive energy-stable nonlinear multigrid finite difference method, which enables the use of large time steps and efficient numerical solution of the equation. A series of numerical simulations in two and three dimensions are performed that demonstrate the accuracy of the numerical method and illustrate the shape instabilities and nonlinear effects of the membrane resistive forces on tumor growth, including the build-up stress in the tissue and membrane buckling.;In this thesis, I also develope a mathematical model of tumor growth in complex, dynamic and elastic geometries. I consider cell-membrane interactions by introducing a wall free energy (Jacqmin, 1999), which takes into account differences in relative strengths of the cell-cell and cell-membrane adhesive forces. I represent the complex, dynamic membrane domain using a phase-field function, and apply the diffuse domain approach to formulate the governing equations of tumor growth. This method allows a straightforward implementation using the adaptive energy-stable numerical methodology described above. Two and three dimensional simulations are performed where the adhesion between tumor cells and a deformable basement membrane is varied. The membrane's resistance to bending is also modeled. The results demonstrated the nontrivial dependence of the growing tumor on the adhesion of cells and flexibility of the basement membrane.;Since cancer cells have the ability to invade the local tissue. I also extend the model to consider local invasion into the stroma. In particular, I model the ability of tumor to secrete matrix degrading enzymes, which degrade the extracellular matrix and the basal membrane. Two and three dimensional simulations are performed to characterize the behavior as a function of cell-membrane adhesiveness and stiffness of the membrane.
机译:在过去的十年中,非线性连续体模型已用于研究形状不稳定性对无血管,血管生成和血管实体瘤生长的影响。形状不稳定性很重要,因为控制肿瘤形态的机制还可以控制肿瘤的局部浸润能力,并且局部浸润被认为是转移的先兆。在本文中,我考虑肿瘤细胞之间的同型粘附以及细胞与基底膜之间的异型粘附,使用了多相混合物模型。我简化了膜弹性的描述,以惩罚整体拉伸和弯曲。使用可确保模型的热力学一致性的变分方法来导出控制方程。为了有效地求解控制方程,我开发了一种自适应能量稳定的非线性多网格有限差分方法,该方法可以使用较大的时间步长和有效的方程数值解。进行了二维和三维的一系列数值模拟,证明了数值方法的准确性,并说明了膜抵抗力对肿瘤生长的形状不稳定性和非线性影响,包括组织中的累积应力和膜屈曲。在本文中,我还开发了复杂,动态和弹性几何形状中肿瘤生长的数学模型。我通过引入壁自由能来考虑细胞膜的相互作用(Jacqmin,1999),该方法考虑了细胞-细胞相对强度和细胞膜粘附力的差异。我使用相场函数表示复杂的动态膜结构域,并应用扩散域方法来制定肿瘤生长的控制方程。该方法允许使用上述自适应能量稳定数值方法进行直接实现。进行二维和三维模拟,其中肿瘤细胞与可变形基底膜之间的粘附力发生变化。还对膜的抗弯曲性进行了建模。结果表明,生长中的肿瘤对细胞的粘附和基底膜的柔韧性具有非平凡的依赖性。因为癌细胞具有侵袭局部组织的能力。我还扩展了模型,以考虑局部侵入基质。特别是,我模拟了肿瘤分泌基质降解酶的能力,该酶会降解细胞外基质和基底膜。进行二维和三维模拟,以表征行为与细胞膜粘附性和膜硬度的关系。

著录项

  • 作者

    Chen, Ying.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Applied Mathematics.;Health Sciences Oncology.;Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号